Home
Class 12
MATHS
If a ne b ne c, then solution of equatio...

If `a ne b ne c`, then solution of equation
`|{:(x-a,x-b,x-c),(x-b,x-c,x-a),(x-c, x-a,x-b):}|=0" "is:`

A

`x=0`

B

`x=a+b+c`

C

`x=1/2(a+b+c)`

D

`x=1/3(a+b+c)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the determinant \[ \left| \begin{array}{ccc} x-a & x-b & x-c \\ x-b & x-c & x-a \\ x-c & x-a & x-b \end{array} \right| = 0 \] we will follow these steps: ### Step 1: Simplify the Determinant We will add all three rows of the determinant together. This means we will replace the first row with the sum of all three rows. \[ \text{New Row 1} = (x-a) + (x-b) + (x-c) = 3x - (a+b+c) \] The determinant now looks like this: \[ \left| \begin{array}{ccc} 3x - (a+b+c) & x-b & x-c \\ x-b & x-c & x-a \\ x-c & x-a & x-b \end{array} \right| = 0 \] ### Step 2: Factor Out Common Terms Now we can factor out \(3x - (a+b+c)\) from the first row of the determinant: \[ (3x - (a+b+c)) \left| \begin{array}{ccc} 1 & \frac{x-b}{3x - (a+b+c)} & \frac{x-c}{3x - (a+b+c)} \\ x-b & x-c & x-a \\ x-c & x-a & x-b \end{array} \right| = 0 \] ### Step 3: Set the Factors to Zero The product of the two factors equals zero, which means either: 1. \(3x - (a+b+c) = 0\) 2. The determinant of the remaining 2x2 matrix equals zero. We will focus on the first factor: \[ 3x - (a+b+c) = 0 \] ### Step 4: Solve for x Now, we can solve for \(x\): \[ 3x = a + b + c \] \[ x = \frac{a + b + c}{3} \] ### Conclusion Thus, the solution to the given determinant equation is: \[ x = \frac{a + b + c}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|8 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.2|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4f|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Solve the equation |{:(x+a,x+b,x+c),(x+b,x+c,x+a),(x+c,x+a,x+b):}|=0

If a,b,c, in R, find the number of real root of the equation |{:(x,c,-b),(-c,x,a),(b,-a,x):}| =0

both roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are

If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}| , then

If a,b,c are real, then both the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are always (A) positive (B) negative (C) real (D) imaginary.

If the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are equal then

if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

The equation |(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0 (a,b,c are different) is satisfied by (A) x=(a+b+c0 (B) x= 1/3 (a+b+c) (C) x=0 (D) none of these

If |1 1 1a b c a^3b^2c^3|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c are different, then the determinant |1 1 1(x-a)^2(x-b)^2(x-c)^2(x-b)(x-c)(x-c)(x-a)(x-a)(x-b)| vanishes when a. a+b+c=0 b. x=1/3(a+b+c) c. x=1/2(a+b+c) d. x=a+b+c

If a , b , c , are roots of the equation x^3+p x+q=0, prove that |[a ,b, c],[ b ,c, a],[ c, a, b]|=0