Home
Class 12
MATHS
|(sin^2x,cosx^2x,1), (cos^2x, sin^2x,1),...

`|(sin^2x,cosx^2x,1), (cos^2x, sin^2x,1),(-10,12,2)|=0`

A

0

B

`12 cos^(2)x-10sin^(2)x`

C

`12sin^(2)x-10cos^(2)x-2`

D

`10sin2x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \[ \begin{vmatrix} \sin^2 x & \cos^2 x & 1 \\ \cos^2 x & \sin^2 x & 1 \\ -10 & 12 & 2 \end{vmatrix} = 0, \] we will follow these steps: ### Step 1: Write the determinant We start with the determinant as given: \[ D = \begin{vmatrix} \sin^2 x & \cos^2 x & 1 \\ \cos^2 x & \sin^2 x & 1 \\ -10 & 12 & 2 \end{vmatrix}. \] ### Step 2: Apply row operations We can perform a row operation to simplify the determinant. Let's modify the first two rows by subtracting the first row from the second row: \[ R_2 \rightarrow R_2 - R_1. \] This gives us: \[ D = \begin{vmatrix} \sin^2 x & \cos^2 x & 1 \\ \cos^2 x - \sin^2 x & \sin^2 x - \cos^2 x & 0 \\ -10 & 12 & 2 \end{vmatrix}. \] ### Step 3: Simplify the determinant Now, we can simplify the determinant further. The second row now has a zero in the last column, which allows us to expand the determinant along the third column: \[ D = 1 \cdot \begin{vmatrix} \sin^2 x & \cos^2 x \\ \cos^2 x - \sin^2 x & \sin^2 x - \cos^2 x \end{vmatrix} + 0 + 0. \] ### Step 4: Calculate the 2x2 determinant Now we compute the 2x2 determinant: \[ D = \begin{vmatrix} \sin^2 x & \cos^2 x \\ \cos^2 x - \sin^2 x & \sin^2 x - \cos^2 x \end{vmatrix}. \] Using the formula for the determinant of a 2x2 matrix, we have: \[ D = \sin^2 x (\sin^2 x - \cos^2 x) - \cos^2 x (\cos^2 x - \sin^2 x). \] ### Step 5: Simplify further This simplifies to: \[ D = \sin^4 x - \sin^2 x \cos^2 x - \cos^4 x + \sin^2 x \cos^2 x. \] The terms \(- \sin^2 x \cos^2 x\) and \(+\sin^2 x \cos^2 x\) cancel out, leaving us with: \[ D = \sin^4 x - \cos^4 x. \] ### Step 6: Factor the expression We can factor this as a difference of squares: \[ D = (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x). \] Using the Pythagorean identity \(\sin^2 x + \cos^2 x = 1\), we have: \[ D = (\sin^2 x - \cos^2 x)(1). \] ### Step 7: Set the determinant to zero For the determinant to equal zero, we need: \[ \sin^2 x - \cos^2 x = 0. \] This implies: \[ \sin^2 x = \cos^2 x. \] ### Step 8: Solve for x This occurs when: \[ \tan^2 x = 1 \quad \Rightarrow \quad \tan x = \pm 1. \] Thus, \(x = n\frac{\pi}{4} + k\pi\) for any integer \(n\). ### Conclusion The solution to the determinant equation is: \[ x = n\frac{\pi}{4} + k\pi \quad (n, k \in \mathbb{Z}). \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|8 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.2|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4f|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

|(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =

Find a quadratic polynomial varphi(x) whose zeros are the maximum and minimum values of the function f(x)=|(1+sin^2x, cos^2x,sin2x) ,(sin^2x,1+cos^2x,sin2x), (sin^2x ,cos^2x,1+sin2x)|

Solve (1+sin^2x-cos^2x)/(1+sin^2x+cos^2x)

Find a quadratic polynomial phi(x) whose zeros are the maximum and minimum values of the function: f(x)=|[1+sin^2x,cos^2x,sin2x],[sin^2x,1+cos^2x,sin2x],[sin^2x,cos^2x,1+sin2x]|

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .

Let f(x)=|[cos(x+x^2),sin(x+x^2),-cos(x+x^2)],[sin(x-x^2),cos(x-x^2), sin(x-x^2)],[sin2x,0,sin(2x^2)]| . Find the value of f^(prime)(0) .

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

If |[sin2x,cos^2x,cos4x],[cos^2x,cos2x,sin^2x],[cos^4x,sin^2x,sin2x]|=a_0+a_1 (sinx)+a_2(sin^2x)+....+a_n(sin^n x) then the value of a_0 is-

Compute the following: [[cos^2x, sin^2x],[sin^2 x, cos^2 x]]+[[sin^2x, cos^2 x],[cos^2 x, sin^2 x]]