Home
Class 12
MATHS
Examine the consistency of the system of...

Examine the consistency of the system of equations`3x y 2z = 2``2y z = 1``3x 5y = 3`

Text Solution

Verified by Experts

3x-y-2z=2
2y-z=-1
3x-5y=3
`rArr" "[{:(3,-1,-2),(0,2,-1),(3,-5,0):}][{:(x),(y),(z):}]=[{:(2),(-1),(3):}]rArrAX=B`
`therefore" "A=[{:(3,-1,-2),(0,2,-1),(3,-5,0):}]`
`rArr" "|A|=[{:(3,-1,-2),(0,2,-1),(3,-5,0):}]=3(0-5)-0+3(I+4)`
= -15+15=0
`therefore` A is non-invertible.
`"Now, "A_(11)=-5, A_(12)=-3, A_(13)=-6`
`A_(21)=10, A_(22)=6, A_(23)=12`
`A_(31)=5, A_(32)=3, A_(33)=6`
`rArr" adj A="[{:(-5,-3,-6),(10,6,12),(5,3,6):}]=[{:(-5,10,5),(-3,6,3),(-6,12,6):}]`
`therefore" (adj A)B="[{:(-5,-3,-6),(10,6,12),(5,3,6):}]=[{:(2),(-1),(3):}]`
`="[{:(-10,-10,+15),(-6,-6,+9),(-12,-12,+18):}]=[{:(-5),(-3),(-6):}]ne0`
`rArr` Given system of equations is inveonsistent.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Examine the consistency of the system of equations x + 2 y = 2" " 2x + 3y = 3

Examine the consistency of the system of equations x + 3 y = 5" " 2x + 6y = 8

Examine the consistency of the system of equations x + y + z = 1 2x + 3y + 2z = 2 a x + a y + 2a z = 4

Examine the consistency of the system of equations 5x -y + 4z = 5," " 2x + 3y + 5z = 2," " 5x -2y + 6z = 1

Determine the product [[-4, 4, 4], [-7, 1, 3],[5, -3, -1]][[1, -1, 1],[1, -2, -2],[2, 1, 3]] and use it to solve the system of equations x – y + z = 4, x – 2y – 2z = 9, 2x + y + 3z = 1

Determine the product [[-4, 4, 4], [-7, 1, 3],[5, -3, -1]][[1, -1, 1],[1, -2, -2],[2, 1, 3]] and use it to solve the system of equations x – y + z = 4, x – 2y – 2z = 9, 2x + y + 3z = 1

Find the solution of homogeneous system of equations: x -2y +z =0; x + y = z and 3x + 6y = 5z

For the system of equations: x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

Test the consistency of the following system of equations : (i) 3x-y=2 ,6x-2y=4 (ii) x+5y=1 , 2x+2y=4 (iii) 2x-z=-1, 6x-6y-2z=5 , 3x-y-2z=2

Solve the following system of equations 3x - 4y + 5z = 0, x + y - 2z = 0, 2x + 3y + z = 0