Home
Class 12
MATHS
The fuction f(x) is defined in the inter...

The fuction f(x) is defined in the interval [0,1] as follows:
`f(x)={:{(0", "x=0),(1/2-x", " 0ltxlt1/2),(1/2", " x=1/2),(2/3-x", " 1/2 lt x lt1),(1"," " "x=1):}`
Discuss the continuity of the function at `x=1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To discuss the continuity of the function \( f(x) \) at \( x = \frac{1}{2} \), we need to check the following conditions: 1. The left-hand limit as \( x \) approaches \( \frac{1}{2} \). 2. The right-hand limit as \( x \) approaches \( \frac{1}{2} \). 3. The value of the function at \( x = \frac{1}{2} \). ### Step 1: Find the left-hand limit as \( x \) approaches \( \frac{1}{2} \) For \( x < \frac{1}{2} \), the function is defined as: \[ f(x) = \frac{1}{2} - x \] Now, we calculate the left-hand limit: \[ \lim_{x \to \frac{1}{2}^-} f(x) = \lim_{x \to \frac{1}{2}^-} \left(\frac{1}{2} - x\right) \] Substituting \( x = \frac{1}{2} \): \[ = \frac{1}{2} - \frac{1}{2} = 0 \] ### Step 2: Find the right-hand limit as \( x \) approaches \( \frac{1}{2} \) For \( x > \frac{1}{2} \), the function is defined as: \[ f(x) = \frac{2}{3} - x \] Now, we calculate the right-hand limit: \[ \lim_{x \to \frac{1}{2}^+} f(x) = \lim_{x \to \frac{1}{2}^+} \left(\frac{2}{3} - x\right) \] Substituting \( x = \frac{1}{2} \): \[ = \frac{2}{3} - \frac{1}{2} \] To simplify \( \frac{2}{3} - \frac{1}{2} \), we find a common denominator (which is 6): \[ = \frac{4}{6} - \frac{3}{6} = \frac{1}{6} \] ### Step 3: Find the value of the function at \( x = \frac{1}{2} \) At \( x = \frac{1}{2} \), the function is defined as: \[ f\left(\frac{1}{2}\right) = \frac{1}{2} \] ### Step 4: Check the continuity condition For \( f(x) \) to be continuous at \( x = \frac{1}{2} \), the following must hold true: \[ \lim_{x \to \frac{1}{2}^-} f(x) = \lim_{x \to \frac{1}{2}^+} f(x) = f\left(\frac{1}{2}\right) \] From our calculations: - Left-hand limit: \( 0 \) - Right-hand limit: \( \frac{1}{6} \) - Value of the function: \( \frac{1}{2} \) Since \( 0 \neq \frac{1}{6} \) and \( 0 \neq \frac{1}{2} \), we conclude that: \[ \text{Left-hand limit} \neq \text{Right-hand limit} \] ### Conclusion The function \( f(x) \) is discontinuous at \( x = \frac{1}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5b|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

f(x){{:(2x "," if x lt 0 ),(0"," if 0 le x le 1),(4x "," if x gt 1 ):} Discuss the continuity

The fuction f(x) is defined as follows: f(x) ={(2x-3,x lt 2),(x-1, x ge 2):} Prove that f(x) is continuous x at =2.

The function f is defined as : f(x)={{:(1","x gt0),(0"," x =0),(-1","x lt 0):} The range of f is :

A function is defined as follows f(x)={:{(x^(3),, x^(2)lt1),(x, , x^(2)ge 1):} then function is

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

Discuss the continuity of the function f(x) given by f(x)={2x-1,ifx<0 and 2x+1,ifxgeq0

For each ositive integer n, define a function f _(n) on [0,1] as follows: f _(n((x)={{:(0, if , x =0),(sin ""(pi)/(2n), if , 0 lt x le 1/n),( sin ""(2pi)/(2n) , if , 1/n lt x le 2/n), (sin ""(3pi)/(2pi), if, 2/n lt x le 3/n), (sin "'(npi)/(2pi) , if, (n-1)/(n) lt x le 1):} Then the value of lim _(x to oo)int _(0)^(1) f_(n) (x) dx is:

Let a function f be defined as f(x) = {:{(x," if " 0 le x lt 1/2),(0," if "x=1/2),(x-1," if" 1/2 lt x le 1):} Establish the existence of Lim_(x to 1/2) f(x) .

A function f(x) is defined by, f(x) = {{:(([x^(2)]-1)/(x^(2)-1)",","for",x^(2) ne 1),(0",","for",x^(2) = 1):} Discuss the continuity of f(x) at x = 1.

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5a
  1. If f(x) f(x)={((x^2-9)/(x-3)","" " xne3),(" 6""," " "x = 3")...

    Text Solution

    |

  2. Discuss the continuity of the function f(x)={(x", " x ge 0),(2", "...

    Text Solution

    |

  3. The fuction f(x) is defined in the interval [0,1] as follows: f(x)={...

    Text Solution

    |

  4. Discuss the continuity of the function f(x)={(3-x", "x le 0),(x", ...

    Text Solution

    |

  5. Show that the function f(x)={(x-4", "x le 5),(5x-24", "xgt5):}...

    Text Solution

    |

  6. The function f(x) ={{:( 5x-4, " for " 0 lt x le 1) ,( 4x^(2) - 3x, ...

    Text Solution

    |

  7. If f(x)={(x^2+1", "x ne 1),(" "3 ", "x=1):} , then check whethe...

    Text Solution

    |

  8. Discuss the continuity of the function f defined by f(x)=1/x , x!=0.

    Text Solution

    |

  9. Discuss the continuity of the function f(x)={((|x|)/x", " xne 0)...

    Text Solution

    |

  10. (i) Dissusse the continuity of the function f(x)={(|x-a|", " xne a...

    Text Solution

    |

  11. Show that f(x) = sinx is continuous for all values of x.

    Text Solution

    |

  12. Prove that f(x) = {sinx/x ; x != 0 and 1 ; x=0. is continuous at x=0...

    Text Solution

    |

  13. If f(x) ={:{((sin 3x)/(sin 5x)", "x ne 0),(0", " x= 0):}, then d...

    Text Solution

    |

  14. Show that the function f(x) ={:{((sin 3x)/(x)", "x ne 0),(1", " ...

    Text Solution

    |

  15. Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", ...

    Text Solution

    |

  16. Discuss the continuity of f(x) ={:{(cos""(1)/(x)", "x ne 0),(" "1",...

    Text Solution

    |

  17. Discuss the continuity of f(x) ={:{(sin""(1)/(x)", "x ne 0),(" "1", ...

    Text Solution

    |

  18. Discuss the continutiy of f(x) ={:{(xcos""(1)/(x)", "x ne 0),(" "0...

    Text Solution

    |

  19. Disuss the continutiy of f(x) ={:{((sin^2 x)/(x^2)", "x ne 0),(" "0"...

    Text Solution

    |

  20. If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", ...

    Text Solution

    |