Home
Class 12
MATHS
(i) Dissusse the continuity of the funct...

(i) Dissusse the continuity of the function `f(x)={(|x-a|", " xne a ),(" "0 ", "x=a):}` at `x=a` (ii) Discuss the continutiy of the function `f(x)={(|x-3|/(x-3)", " xne 3 ),(" "0 ", "x=3):}` at `x=3`

Text Solution

AI Generated Solution

The correct Answer is:
To discuss the continuity of the given functions, we will follow the standard definition of continuity at a point. A function \( f(x) \) is continuous at \( x = c \) if: 1. \( f(c) \) is defined. 2. The limit of \( f(x) \) as \( x \) approaches \( c \) exists. 3. The limit of \( f(x) \) as \( x \) approaches \( c \) is equal to \( f(c) \). ### Part (i): Continuity of the function \( f(x) = \begin{cases} |x-a| & \text{if } x \neq a \\ 0 & \text{if } x = a \end{cases} \) at \( x = a \) **Step 1: Check if \( f(a) \) is defined.** - We have \( f(a) = 0 \). **Step 2: Calculate the left-hand limit as \( x \) approaches \( a \).** - For \( x < a \), \( f(x) = |x-a| = -(x-a) = a - x \). - Thus, \[ \lim_{x \to a^-} f(x) = \lim_{x \to a^-} (a - x) = a - a = 0. \] **Step 3: Calculate the right-hand limit as \( x \) approaches \( a \).** - For \( x > a \), \( f(x) = |x-a| = x - a \). - Thus, \[ \lim_{x \to a^+} f(x) = \lim_{x \to a^+} (x - a) = a - a = 0. \] **Step 4: Compare the limits and the function value.** - We have: \[ \lim_{x \to a^-} f(x) = 0, \quad \lim_{x \to a^+} f(x) = 0, \quad f(a) = 0. \] - Since both limits are equal and equal to \( f(a) \), the function is continuous at \( x = a \). ### Conclusion for Part (i): The function \( f(x) \) is continuous at \( x = a \). --- ### Part (ii): Continuity of the function \( f(x) = \begin{cases} \frac{|x-3|}{x-3} & \text{if } x \neq 3 \\ 0 & \text{if } x = 3 \end{cases} \) at \( x = 3 \) **Step 1: Check if \( f(3) \) is defined.** - We have \( f(3) = 0 \). **Step 2: Calculate the left-hand limit as \( x \) approaches \( 3 \).** - For \( x < 3 \), \( f(x) = \frac{|x-3|}{x-3} = \frac{-(x-3)}{x-3} = -1 \). - Thus, \[ \lim_{x \to 3^-} f(x) = -1. \] **Step 3: Calculate the right-hand limit as \( x \) approaches \( 3 \).** - For \( x > 3 \), \( f(x) = \frac{|x-3|}{x-3} = \frac{x-3}{x-3} = 1 \). - Thus, \[ \lim_{x \to 3^+} f(x) = 1. \] **Step 4: Compare the limits and the function value.** - We have: \[ \lim_{x \to 3^-} f(x) = -1, \quad \lim_{x \to 3^+} f(x) = 1, \quad f(3) = 0. \] - Since the left-hand limit and right-hand limit are not equal, and neither is equal to \( f(3) \), the function is not continuous at \( x = 3 \). ### Conclusion for Part (ii): The function \( f(x) \) is not continuous at \( x = 3 \). ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5b|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Discuss the continuity of the function f(x)={x/(|x|),x!=0 0,x=0

Discuss the continuity of the function f (x)= |x| " at " x=0

Discuss the continutiy of the function f(x)= {(4x-2", " x le 2),(3x", " x gt 2):}

Discuss the continuity of the function f(x)={((|x|)/x", " xne 0),(1", " x=0):} at x=0

Discuss the continuity of the function defined by f(x)={x+2, if x 0

Discuss the continutiy of the function f(x)= {(3x+5", " x ge 2),(6x-1", " x lt 2):}

Discuss the continuity of the function f(x) ={(x", " x ge 0),(2", "x lt0):} at x=0

Discuss the continuity of the function/given by f(x)=x^3+x^2-1 .

Discuss the continuity of the function f(x) ={(3-x", "x le 0),(x", "x gt 0):} at x=0.

Discuss the continutiy of the function f(x)= {((sin x)/x", " x lt 0),(2x+3 ", " x ge 0 ):}

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5a
  1. Discuss the continuity of the function f defined by f(x)=1/x , x!=0.

    Text Solution

    |

  2. Discuss the continuity of the function f(x)={((|x|)/x", " xne 0)...

    Text Solution

    |

  3. (i) Dissusse the continuity of the function f(x)={(|x-a|", " xne a...

    Text Solution

    |

  4. Show that f(x) = sinx is continuous for all values of x.

    Text Solution

    |

  5. Prove that f(x) = {sinx/x ; x != 0 and 1 ; x=0. is continuous at x=0...

    Text Solution

    |

  6. If f(x) ={:{((sin 3x)/(sin 5x)", "x ne 0),(0", " x= 0):}, then d...

    Text Solution

    |

  7. Show that the function f(x) ={:{((sin 3x)/(x)", "x ne 0),(1", " ...

    Text Solution

    |

  8. Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", ...

    Text Solution

    |

  9. Discuss the continuity of f(x) ={:{(cos""(1)/(x)", "x ne 0),(" "1",...

    Text Solution

    |

  10. Discuss the continuity of f(x) ={:{(sin""(1)/(x)", "x ne 0),(" "1", ...

    Text Solution

    |

  11. Discuss the continutiy of f(x) ={:{(xcos""(1)/(x)", "x ne 0),(" "0...

    Text Solution

    |

  12. Disuss the continutiy of f(x) ={:{((sin^2 x)/(x^2)", "x ne 0),(" "0"...

    Text Solution

    |

  13. If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", ...

    Text Solution

    |

  14. For what value of k, the function f(x) ={:{(kx^2", " x le 2 ),(" ...

    Text Solution

    |

  15. For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2...

    Text Solution

    |

  16. For what value of k, the function f(x) ={:{(2x+1", "x gt2),(" ...

    Text Solution

    |

  17. If the function f(x) given by f(x)={3a x+b ,\ \ \ if\ x >1\ \ \ \ \ \ ...

    Text Solution

    |

  18. Discuss the continuity of the function f(x) ={:{((1+cos x)/(tan^2 x...

    Text Solution

    |

  19. Discuss the continuity of the function f(x) ={:{((Sinx)/(x) ", "x ...

    Text Solution

    |

  20. Show that the function f(x)=2x-|x| is continuous at x=0 .

    Text Solution

    |