Home
Class 12
MATHS
If the function f(x) ={:{((3x^3-2x^2-1)/...

If the function `f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", " x= 1):},`
is continuous at x=1,find the value of k.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that the function \[ f(x) = \begin{cases} \frac{3x^3 - 2x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ k & \text{if } x = 1 \end{cases} \] is continuous at \( x = 1 \), we need to ensure that \[ f(1) = \lim_{x \to 1} f(x). \] ### Step 1: Set up the equation for continuity Since \( f(1) = k \), we need to find \[ k = \lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{3x^3 - 2x^2 - 1}{x - 1}. \] ### Step 2: Evaluate the limit Substituting \( x = 1 \) directly into the limit gives us \[ \frac{3(1)^3 - 2(1)^2 - 1}{1 - 1} = \frac{3 - 2 - 1}{0} = \frac{0}{0}. \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule According to L'Hôpital's Rule, if we have an indeterminate form \( \frac{0}{0} \), we can differentiate the numerator and the denominator: 1. Differentiate the numerator: \[ \frac{d}{dx}(3x^3 - 2x^2 - 1) = 9x^2 - 4x. \] 2. Differentiate the denominator: \[ \frac{d}{dx}(x - 1) = 1. \] Now we can rewrite the limit: \[ \lim_{x \to 1} \frac{3x^3 - 2x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{9x^2 - 4x}{1}. \] ### Step 4: Substitute \( x = 1 \) into the new limit Now we substitute \( x = 1 \): \[ 9(1)^2 - 4(1) = 9 - 4 = 5. \] ### Step 5: Conclude the value of \( k \) Thus, we have \[ k = 5. \] ### Final Answer The value of \( k \) is \( 5 \). ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5b|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.

If the function f(x)={{:((x^(2)-1)/(x-1), "When ", x ne1),(k, "When" , x=1):} is given to be continuous at x=1, then the value of k is ____.

Find the value of k so that the function f(x) = {((2^(x+2) - 16)/(4^(x) - 16),"if",x ne 2),(" k","if",x = 2):} is continuous at x = 2.

If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is continuous at x =1 then

If f(x)={{:((sqrt(x^(2)+5)-3)/(x+2)",",x ne-2),(k,","x=-2):} is continuous at x=-2 , then the value of k is

Determine the value of the constant k so that the function f(x)={(x^2-3x+2)/(x-1),\ \ \ if\ x!=1 ):{k ,\ \ \ if\ x=1 is continuous at x=1 .

For what value of k, the function f(x) ={:{(2x+1", "x gt2),(" "k ", " x=2),(3x-1 ", "x lt2):}, is continuous at x=2.

If the function f(x)={A x-B ,xlt=1 3x ,1

If f(x)={(x^3+x^2-16x+20)/(x-2)^2,x ne 0 k, x=0 is continuous for all real values of x, find the value of K.

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5a
  1. Discuss the continuity of the function f defined by f(x)=1/x , x!=0.

    Text Solution

    |

  2. Discuss the continuity of the function f(x)={((|x|)/x", " xne 0)...

    Text Solution

    |

  3. (i) Dissusse the continuity of the function f(x)={(|x-a|", " xne a...

    Text Solution

    |

  4. Show that f(x) = sinx is continuous for all values of x.

    Text Solution

    |

  5. Prove that f(x) = {sinx/x ; x != 0 and 1 ; x=0. is continuous at x=0...

    Text Solution

    |

  6. If f(x) ={:{((sin 3x)/(sin 5x)", "x ne 0),(0", " x= 0):}, then d...

    Text Solution

    |

  7. Show that the function f(x) ={:{((sin 3x)/(x)", "x ne 0),(1", " ...

    Text Solution

    |

  8. Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", ...

    Text Solution

    |

  9. Discuss the continuity of f(x) ={:{(cos""(1)/(x)", "x ne 0),(" "1",...

    Text Solution

    |

  10. Discuss the continuity of f(x) ={:{(sin""(1)/(x)", "x ne 0),(" "1", ...

    Text Solution

    |

  11. Discuss the continutiy of f(x) ={:{(xcos""(1)/(x)", "x ne 0),(" "0...

    Text Solution

    |

  12. Disuss the continutiy of f(x) ={:{((sin^2 x)/(x^2)", "x ne 0),(" "0"...

    Text Solution

    |

  13. If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", ...

    Text Solution

    |

  14. For what value of k, the function f(x) ={:{(kx^2", " x le 2 ),(" ...

    Text Solution

    |

  15. For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2...

    Text Solution

    |

  16. For what value of k, the function f(x) ={:{(2x+1", "x gt2),(" ...

    Text Solution

    |

  17. If the function f(x) given by f(x)={3a x+b ,\ \ \ if\ x >1\ \ \ \ \ \ ...

    Text Solution

    |

  18. Discuss the continuity of the function f(x) ={:{((1+cos x)/(tan^2 x...

    Text Solution

    |

  19. Discuss the continuity of the function f(x) ={:{((Sinx)/(x) ", "x ...

    Text Solution

    |

  20. Show that the function f(x)=2x-|x| is continuous at x=0 .

    Text Solution

    |