Home
Class 12
MATHS
For what value of k, the function f(x...

For what value of k, the function
`f(x) ={:{(2x+1", "x gt2),(" "k ", " x=2),(3x-1 ", "x lt2):},`
is continuous at x=2.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) for which the function \[ f(x) = \begin{cases} 2x + 1 & \text{if } x > 2 \\ k & \text{if } x = 2 \\ 3x - 1 & \text{if } x < 2 \end{cases} \] is continuous at \( x = 2 \), we need to ensure that the left-hand limit (LHL), right-hand limit (RHL), and the function value at that point are all equal. ### Step 1: Calculate the Left-Hand Limit (LHL) as \( x \) approaches 2 from the left. The left-hand limit is given by the expression for \( f(x) \) when \( x < 2 \): \[ \text{LHL} = \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (3x - 1) \] Substituting \( x = 2 \): \[ \text{LHL} = 3(2) - 1 = 6 - 1 = 5 \] ### Step 2: Calculate the Right-Hand Limit (RHL) as \( x \) approaches 2 from the right. The right-hand limit is given by the expression for \( f(x) \) when \( x > 2 \): \[ \text{RHL} = \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (2x + 1) \] Substituting \( x = 2 \): \[ \text{RHL} = 2(2) + 1 = 4 + 1 = 5 \] ### Step 3: Set the limits equal to the function value at \( x = 2 \). For the function to be continuous at \( x = 2 \), we need: \[ \text{LHL} = \text{RHL} = f(2) \] From our calculations: \[ \text{LHL} = 5, \quad \text{RHL} = 5 \] Thus, we have: \[ f(2) = k \] Setting the limits equal to the function value: \[ k = 5 \] ### Conclusion The value of \( k \) for which the function is continuous at \( x = 2 \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5b|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.

For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2),(" "k", " x=2):}, is continuous at x =2.

For what value of k, the function f(x) ={:{(kx^2", " x le 2 ),(" "5", " xgt2):}, is continuous at x=2.

Find the value of k so that the function f(x) = {((2^(x+2) - 16)/(4^(x) - 16),"if",x ne 2),(" k","if",x = 2):} is continuous at x = 2.

If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", " x= 1):}, is continuous at x=1,find the value of k.

Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 ),(" "37 - x," "2 lt x le 3 ):} is continuous at x = 2

Find the value of k , so that the function f(x) = {(kx^2 + 5, if x le 1), (2, if x gt 1):} is continuous at x = 1

Find the value of k, so that the function f(x) = {(kx^2 + 5, if x le 1), (2, if x gt 1):} is continuous at x = 1

For what value of k is the function f(x)={(sin2x)/x ,\ \ \ x!=0k ,\ \ \ x=0 continuous at x=0 ?

For what value of k is the function f(x)={(x^2-1)/(x-1), ,x!=1,k,x=1" continuous at"x=1?

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5a
  1. Discuss the continuity of the function f defined by f(x)=1/x , x!=0.

    Text Solution

    |

  2. Discuss the continuity of the function f(x)={((|x|)/x", " xne 0)...

    Text Solution

    |

  3. (i) Dissusse the continuity of the function f(x)={(|x-a|", " xne a...

    Text Solution

    |

  4. Show that f(x) = sinx is continuous for all values of x.

    Text Solution

    |

  5. Prove that f(x) = {sinx/x ; x != 0 and 1 ; x=0. is continuous at x=0...

    Text Solution

    |

  6. If f(x) ={:{((sin 3x)/(sin 5x)", "x ne 0),(0", " x= 0):}, then d...

    Text Solution

    |

  7. Show that the function f(x) ={:{((sin 3x)/(x)", "x ne 0),(1", " ...

    Text Solution

    |

  8. Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", ...

    Text Solution

    |

  9. Discuss the continuity of f(x) ={:{(cos""(1)/(x)", "x ne 0),(" "1",...

    Text Solution

    |

  10. Discuss the continuity of f(x) ={:{(sin""(1)/(x)", "x ne 0),(" "1", ...

    Text Solution

    |

  11. Discuss the continutiy of f(x) ={:{(xcos""(1)/(x)", "x ne 0),(" "0...

    Text Solution

    |

  12. Disuss the continutiy of f(x) ={:{((sin^2 x)/(x^2)", "x ne 0),(" "0"...

    Text Solution

    |

  13. If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", ...

    Text Solution

    |

  14. For what value of k, the function f(x) ={:{(kx^2", " x le 2 ),(" ...

    Text Solution

    |

  15. For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2...

    Text Solution

    |

  16. For what value of k, the function f(x) ={:{(2x+1", "x gt2),(" ...

    Text Solution

    |

  17. If the function f(x) given by f(x)={3a x+b ,\ \ \ if\ x >1\ \ \ \ \ \ ...

    Text Solution

    |

  18. Discuss the continuity of the function f(x) ={:{((1+cos x)/(tan^2 x...

    Text Solution

    |

  19. Discuss the continuity of the function f(x) ={:{((Sinx)/(x) ", "x ...

    Text Solution

    |

  20. Show that the function f(x)=2x-|x| is continuous at x=0 .

    Text Solution

    |