Home
Class 12
MATHS
Discuss the continuity of the function ...

Discuss the continuity of the function
`f(x) ={:{((1+cos x)/(tan^2 x) ", "x ne pi),((1)/(2) ", " x=pi):},`
`at x=pi`.

Text Solution

AI Generated Solution

The correct Answer is:
To discuss the continuity of the function \[ f(x) = \begin{cases} \frac{1 + \cos x}{\tan^2 x} & \text{if } x \neq \pi \\ \frac{1}{2} & \text{if } x = \pi \end{cases} \] at \( x = \pi \), we need to check the following conditions: 1. **Existence of the limit** as \( x \) approaches \( \pi \). 2. **Value of the function** at \( x = \pi \). 3. **Equality of the limit and the function value** at \( x = \pi \). ### Step 1: Compute the limit as \( x \) approaches \( \pi \) We need to find: \[ \lim_{x \to \pi} f(x) = \lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x} \] Substituting \( x = \pi \): - \( \cos(\pi) = -1 \) - \( \tan(\pi) = 0 \) Thus, we have: \[ 1 + \cos(\pi) = 1 - 1 = 0 \] \[ \tan^2(\pi) = 0^2 = 0 \] This gives us the indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Differentiate the numerator and the denominator: - The derivative of the numerator \( 1 + \cos x \) is \( -\sin x \). - The derivative of the denominator \( \tan^2 x \) is \( 2\tan x \cdot \sec^2 x \). Now we can rewrite the limit: \[ \lim_{x \to \pi} \frac{-\sin x}{2\tan x \sec^2 x} \] ### Step 3: Substitute \( x = \pi \) again Substituting \( x = \pi \): - \( \sin(\pi) = 0 \) - \( \tan(\pi) = 0 \) - \( \sec^2(\pi) = \frac{1}{\cos^2(\pi)} = 1 \) This again gives us \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 4: Differentiate again Differentiate the numerator and denominator again: - The derivative of \( -\sin x \) is \( -\cos x \). - The derivative of \( 2\tan x \sec^2 x \) can be computed using the product rule. After differentiating, we can simplify and evaluate the limit again. ### Step 5: Evaluate the limit Continuing from the previous step, after simplification, we find: \[ \lim_{x \to \pi} \frac{-\cos x}{2(\sec^2 x + 2\tan^2 x \sec^2 x)} \] Substituting \( x = \pi \): - \( -\cos(\pi) = 1 \) - The denominator becomes a non-zero value. Thus, we find: \[ \lim_{x \to \pi} f(x) = \frac{1}{2} \] ### Step 6: Check the value of the function at \( x = \pi \) From the definition of the function: \[ f(\pi) = \frac{1}{2} \] ### Step 7: Conclusion Since: \[ \lim_{x \to \pi} f(x) = f(\pi) = \frac{1}{2} \] We conclude that \( f(x) \) is continuous at \( x = \pi \).
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5b|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Discuss the continuity of the function f defined by f(x) = 1/(x-1) , x ne 1

Examination the function f(x) given by f(x)={((cosx)/(pi/2-x) ,, x != pi/2),(1 ,, x = pi/2):} ; for continuity at x=pi/2

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

Discuss the continuity of f(x) in [0, 2], where f(x) = {{:([cos pi x]",",x le 1),(|2x - 3|[x - 2]",",x gt 1):} where [.] denotes the greatest integral function.

Find the value of k so that the function f defined by f(x)={(kcosx)/(pi-2x), "if"\ \ x\ !=pi/2" 3,if"\ x=pi/2 is continuous at x=pi/2

The primitive of the function f(x)= x | cos x| , when pi/2 lt x lt pi is given by

If the function f defined on (pi/6,pi/3) by {{:((sqrt2 cos x -1)/(cot x -1)" , " x ne pi/4),(" is continuous,"),(" k , "x=pi/4 ):} then k is equal to

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

Discuss maxima/minima of f(x) = (x)/(1 + x tan x), x in (0, (pi)/(2))

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5a
  1. Discuss the continuity of the function f defined by f(x)=1/x , x!=0.

    Text Solution

    |

  2. Discuss the continuity of the function f(x)={((|x|)/x", " xne 0)...

    Text Solution

    |

  3. (i) Dissusse the continuity of the function f(x)={(|x-a|", " xne a...

    Text Solution

    |

  4. Show that f(x) = sinx is continuous for all values of x.

    Text Solution

    |

  5. Prove that f(x) = {sinx/x ; x != 0 and 1 ; x=0. is continuous at x=0...

    Text Solution

    |

  6. If f(x) ={:{((sin 3x)/(sin 5x)", "x ne 0),(0", " x= 0):}, then d...

    Text Solution

    |

  7. Show that the function f(x) ={:{((sin 3x)/(x)", "x ne 0),(1", " ...

    Text Solution

    |

  8. Discuss the continuity of f(x) ={:{((sin^2 2x)/(x^2)", "x ne 0),(1", ...

    Text Solution

    |

  9. Discuss the continuity of f(x) ={:{(cos""(1)/(x)", "x ne 0),(" "1",...

    Text Solution

    |

  10. Discuss the continuity of f(x) ={:{(sin""(1)/(x)", "x ne 0),(" "1", ...

    Text Solution

    |

  11. Discuss the continutiy of f(x) ={:{(xcos""(1)/(x)", "x ne 0),(" "0...

    Text Solution

    |

  12. Disuss the continutiy of f(x) ={:{((sin^2 x)/(x^2)", "x ne 0),(" "0"...

    Text Solution

    |

  13. If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", ...

    Text Solution

    |

  14. For what value of k, the function f(x) ={:{(kx^2", " x le 2 ),(" ...

    Text Solution

    |

  15. For what value of k, the function f(x) ={:{((x^2-4)/(x-2)", " x ne 2...

    Text Solution

    |

  16. For what value of k, the function f(x) ={:{(2x+1", "x gt2),(" ...

    Text Solution

    |

  17. If the function f(x) given by f(x)={3a x+b ,\ \ \ if\ x >1\ \ \ \ \ \ ...

    Text Solution

    |

  18. Discuss the continuity of the function f(x) ={:{((1+cos x)/(tan^2 x...

    Text Solution

    |

  19. Discuss the continuity of the function f(x) ={:{((Sinx)/(x) ", "x ...

    Text Solution

    |

  20. Show that the function f(x)=2x-|x| is continuous at x=0 .

    Text Solution

    |