Home
Class 12
MATHS
Discuss the continutiy of the function f...

Discuss the continutiy of the function `f(x)= {(4x-2", " x le 2),(3x", " x gt 2):}`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \[ f(x) = \begin{cases} 4x - 2 & \text{if } x \leq 2 \\ 3x & \text{if } x > 2 \end{cases} \] at \( x = 2 \), we need to check the following conditions: 1. \( f(2) \) exists. 2. The left-hand limit \( \lim_{x \to 2^-} f(x) \) exists. 3. The right-hand limit \( \lim_{x \to 2^+} f(x) \) exists. 4. The left-hand limit and right-hand limit must be equal to \( f(2) \). ### Step 1: Calculate \( f(2) \) Since \( x = 2 \) falls under the first case of the function definition: \[ f(2) = 4(2) - 2 = 8 - 2 = 6 \] ### Step 2: Calculate the left-hand limit \( \lim_{x \to 2^-} f(x) \) For \( x < 2 \), we use the first case of the function: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (4x - 2) \] Substituting \( x = 2 \): \[ = 4(2) - 2 = 8 - 2 = 6 \] ### Step 3: Calculate the right-hand limit \( \lim_{x \to 2^+} f(x) \) For \( x > 2 \), we use the second case of the function: \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (3x) \] Substituting \( x = 2 \): \[ = 3(2) = 6 \] ### Step 4: Check continuity Now we have: - \( f(2) = 6 \) - \( \lim_{x \to 2^-} f(x) = 6 \) - \( \lim_{x \to 2^+} f(x) = 6 \) Since all three values are equal: \[ f(2) = \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = 6 \] ### Conclusion The function \( f(x) \) is continuous at \( x = 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5a|30 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Discuss the continutiy of the function f(x)= {(3x+5", " x ge 2),(6x-1", " x lt 2):}

Discuss the continuity of the function f(x) ={(3-x", "x le 0),(x", "x gt 0):} at x=0.

Discuss the continutiy of the function f(x)= {((sin x)/x", " x lt 0),(2x+3 ", " x ge 0 ):}

Discuss of the continutiy of the fuction f(x)={{:(sin x/x ", " x lt 0),(x+2 "," x ge 0):}

Discuss the continuity of the function f(x) ={(1+x^2,x le 1),(1-x, x gt 1):} at x=1.

Discuss the continuity of the function f(x)={2x-1 ,ifx<2, (3x)/2ifxgeq2

(i) Dissusse the continuity of the function f(x)={(|x-a|", " xne a ),(" "0 ", "x=a):} at x=a (ii) Discuss the continutiy of the function f(x)={(|x-3|/(x-3)", " xne 3 ),(" "0 ", "x=3):} at x=3

Discuss the continuity of the function f(x)={2x-1 ,ifx<2, (3x)/2 ,ifx geq2 at x=2

Discuss the continuity of the function f defined by f(x)= {:{(x +3, if x le 1 ), (x -3, if x gt 1):}

Discuss the differentiability of function f(x)=x-|x-x^2|