Home
Class 12
MATHS
x =a tan theta ,y =b sec theta find dy/d...

`x =a tan theta ,y =b sec theta` find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) given the equations \( x = a \tan \theta \) and \( y = b \sec \theta \), we can follow these steps: ### Step 1: Differentiate \( x \) with respect to \( \theta \) We start with the equation for \( x \): \[ x = a \tan \theta \] Differentiating both sides with respect to \( \theta \): \[ \frac{dx}{d\theta} = a \sec^2 \theta \] Let’s label this as Equation (1). ### Step 2: Differentiate \( y \) with respect to \( \theta \) Now we differentiate \( y \): \[ y = b \sec \theta \] Differentiating both sides with respect to \( \theta \): \[ \frac{dy}{d\theta} = b \sec \theta \tan \theta \] Let’s label this as Equation (2). ### Step 3: Find \( \frac{dy}{dx} \) To find \( \frac{dy}{dx} \), we use the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the expressions from Equations (1) and (2): \[ \frac{dy}{dx} = \frac{b \sec \theta \tan \theta}{a \sec^2 \theta} \] ### Step 4: Simplify the expression Now we simplify the expression: \[ \frac{dy}{dx} = \frac{b \tan \theta}{a \sec \theta} \] We know that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) and \( \sec \theta = \frac{1}{\cos \theta} \). Thus, we can rewrite: \[ \frac{dy}{dx} = \frac{b \cdot \frac{\sin \theta}{\cos \theta}}{a \cdot \frac{1}{\cos \theta}} = \frac{b \sin \theta}{a} \] ### Final Result Thus, the final result for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{b}{a} \sin \theta \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x = a sec^(3) theta, y =a tan ^(3) theta , then find (dy)/( dx) at theta = (pi)/(4) .

If theta is an acute angle and tan theta + sec theta = 1.5 , find sin theta, tan theta and sec theta .

If 1+ tan^(2) theta = sec^(2) theta then find (sec theta + tan theta)

Solve : tan theta + sec theta = sqrt3.

If x = a sec theta, y = b tan theta " then " (dy)/(dx) = ?

If theta is eliminated from the equations a sec theta-x tan theta=y" and "b sec theta+y tan theta=x (a and b are constants), then :

If x = a( sin theta - theta cos theta) and y = a ( cos theta + theta sin theta) " find " (dy)/(dx) at theta = pi/4

If theta is an acute angle and sin theta=(a^2-b^2)/(a^2+b^2) (a, b>0) find the values of tan theta , sec theta and cosec theta

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

If x = a cos theta + b sin theta and y =asin theta-b cos theta , then prove that y^2 (d^2y)/(dx^2)-x(dy)/(dx)+y=0