Home
Class 12
MATHS
x=2 cos^2 t, y= 6 sin ^2 t find dy/dx...

`x=2 cos^2 t, y= 6 sin ^2 t ` find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = 2 \cos^2 t\) and \(y = 6 \sin^2 t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) We start with the equation for \(x\): \[ x = 2 \cos^2 t \] Using the chain rule, we differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = 2 \cdot \frac{d}{dt}(\cos^2 t) = 2 \cdot 2 \cos t \cdot \frac{d}{dt}(\cos t) = 2 \cdot 2 \cos t \cdot (-\sin t) = -4 \cos t \sin t \] This can also be expressed using the double angle identity: \[ \frac{dx}{dt} = -2 \sin(2t) \] Let’s label this as Equation (1). ### Step 2: Differentiate \(y\) with respect to \(t\) Now we differentiate \(y\): \[ y = 6 \sin^2 t \] Using the chain rule again, we get: \[ \frac{dy}{dt} = 6 \cdot \frac{d}{dt}(\sin^2 t) = 6 \cdot 2 \sin t \cdot \frac{d}{dt}(\sin t) = 6 \cdot 2 \sin t \cdot \cos t = 12 \sin t \cos t \] This can also be expressed using the double angle identity: \[ \frac{dy}{dt} = 6 \sin(2t) \] Let’s label this as Equation (2). ### Step 3: Find \(\frac{dy}{dx}\) To find \(\frac{dy}{dx}\), we use the relationship: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values from Equations (1) and (2): \[ \frac{dy}{dx} = \frac{12 \sin(2t)}{-2 \sin(2t)} \] The \(\sin(2t)\) terms cancel out (assuming \(\sin(2t) \neq 0\)): \[ \frac{dy}{dx} = \frac{12}{-2} = -6 \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -6 \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

x=a cos t, y=b sin t find dy/dx

x= 2 cos t -cos 2t ,y=2 sin t-sin 2t Find d y / d x

If x=a cos^3 t " and "y=a sin ^3 t "then find " dy/dx

If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

x=a (t-sin t) , y =a (1-cos t) find dy/dx

If x=a t^2,\ \ y=2\ a t , then find (dy)/(dx)

If x=2 and y=a t^2 ,then find dy/dx

x=sqrt(sin 2t),y=sqrt(cos 2 t) find dy/dx

If y=cos^2x , then find (dy)/(dx) .

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4