Home
Class 12
MATHS
x=sqrt(sin 2t),y=sqrt(cos 2 t) find d...

`x=sqrt(sin 2t),y=sqrt(cos 2 t)` find dy/dx

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = \sqrt{\sin(2t)}\) and \(y = \sqrt{\cos(2t)}\), we will use the chain rule. The process involves finding \(\frac{dy}{dt}\) and \(\frac{dx}{dt}\) first, and then using these to find \(\frac{dy}{dx}\). ### Step-by-Step Solution: 1. **Find \(\frac{dx}{dt}\)**: \[ x = \sqrt{\sin(2t)} = (\sin(2t))^{1/2} \] Using the chain rule: \[ \frac{dx}{dt} = \frac{1}{2} (\sin(2t))^{-1/2} \cdot \frac{d}{dt}(\sin(2t)) \] The derivative of \(\sin(2t)\) is \(2\cos(2t)\): \[ \frac{dx}{dt} = \frac{1}{2} (\sin(2t))^{-1/2} \cdot 2\cos(2t) = \frac{\cos(2t)}{\sqrt{\sin(2t)}} \] 2. **Find \(\frac{dy}{dt}\)**: \[ y = \sqrt{\cos(2t)} = (\cos(2t))^{1/2} \] Again using the chain rule: \[ \frac{dy}{dt} = \frac{1}{2} (\cos(2t))^{-1/2} \cdot \frac{d}{dt}(\cos(2t)) \] The derivative of \(\cos(2t)\) is \(-2\sin(2t)\): \[ \frac{dy}{dt} = \frac{1}{2} (\cos(2t))^{-1/2} \cdot (-2\sin(2t)) = -\frac{\sin(2t)}{\sqrt{\cos(2t)}} \] 3. **Find \(\frac{dy}{dx}\)**: Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{-\frac{\sin(2t)}{\sqrt{\cos(2t)}}}{\frac{\cos(2t)}{\sqrt{\sin(2t)}}} \] Simplifying this expression: \[ \frac{dy}{dx} = -\frac{\sin(2t)}{\sqrt{\cos(2t)}} \cdot \frac{\sqrt{\sin(2t)}}{\cos(2t)} = -\frac{\sin(2t) \cdot \sqrt{\sin(2t)}}{\cos(2t) \cdot \sqrt{\cos(2t)}} \] 4. **Final Result**: We can express the final result as: \[ \frac{dy}{dx} = -\frac{\tan(2t)}{\sqrt{\cos(2t)} \cdot \sqrt{\sin(2t)}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

x=a (t-sin t) , y =a (1-cos t) find dy/dx

If x=3sint-sin3t , y=3cost-cos3t , find (dy)/(dx) at t=pi/3 .

x=a(t-sin t),y=a(1+cos t) then (dy)/(dx) =

x=a cos t, y=b sin t find dy/dx

If x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(cos2t) show that dy/dx =0 at t=pi/6

If x=3sint-sin3t ,y=3cos t-cos3t ,"find "(dy)/(dx)" at "t=pi/3dot

If y=sqrt((1-cos 2x)/(1+cos 2x)) , then find (dy)/(dx) .

If x=sqrt(a^sin^(-1t) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^(sin^-1t)) , y=sqrt(a^(cos^-1t)) , then (dy)/(dx)=.........

x=2 cos^2 t, y= 6 sin ^2 t find dy/dx