Home
Class 12
MATHS
x=a (t-sin t) , y =a (1-cos t) find dy...

`x=a (t-sin t) , y =a (1-cos t) ` find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) for the given parametric equations \( x = a(t - \sin t) \) and \( y = a(1 - \cos t) \), we will follow these steps: ### Step 1: Differentiate \( x \) with respect to \( t \) Given: \[ x = a(t - \sin t) \] Differentiate \( x \) with respect to \( t \): \[ \frac{dx}{dt} = a\left( \frac{d}{dt}(t) - \frac{d}{dt}(\sin t) \right) \] \[ \frac{dx}{dt} = a(1 - \cos t) \] ### Step 2: Differentiate \( y \) with respect to \( t \) Given: \[ y = a(1 - \cos t) \] Differentiate \( y \) with respect to \( t \): \[ \frac{dy}{dt} = a\left( \frac{d}{dt}(1) - \frac{d}{dt}(\cos t) \right) \] \[ \frac{dy}{dt} = a(0 + \sin t) = a \sin t \] ### Step 3: Find \( \frac{dy}{dx} \) Using the chain rule, we can find \( \frac{dy}{dx} \) as follows: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values from Steps 1 and 2: \[ \frac{dy}{dx} = \frac{a \sin t}{a(1 - \cos t)} \] The \( a \) cancels out: \[ \frac{dy}{dx} = \frac{\sin t}{1 - \cos t} \] ### Step 4: Simplify \( \frac{dy}{dx} \) We can simplify \( \frac{dy}{dx} \) further: \[ \frac{dy}{dx} = \frac{\sin t}{1 - \cos t} \] Using the identity \( 1 - \cos t = 2 \sin^2\left(\frac{t}{2}\right) \) and \( \sin t = 2 \sin\left(\frac{t}{2}\right) \cos\left(\frac{t}{2}\right) \): \[ \frac{dy}{dx} = \frac{2 \sin\left(\frac{t}{2}\right) \cos\left(\frac{t}{2}\right)}{2 \sin^2\left(\frac{t}{2}\right)} \] The \( 2 \) cancels out: \[ \frac{dy}{dx} = \frac{\cos\left(\frac{t}{2}\right)}{\sin\left(\frac{t}{2}\right)} = \cot\left(\frac{t}{2}\right) \] ### Final Answer Thus, the final result is: \[ \frac{dy}{dx} = \cot\left(\frac{t}{2}\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x = a ( t+ sin t) and y = a (1- cos t) " find " (dy)/(dx)

x=a(t-sin t),y=a(1+cos t) then (dy)/(dx) =

x=a cos t, y=b sin t find dy/dx

x=sqrt(sin 2t),y=sqrt(cos 2 t) find dy/dx

If x=3sint-sin3t , y=3cost-cos3t , find (dy)/(dx) at t=pi/3 .

x = "sin" t, y = "cos" 2t

If x=3sint-sin3t ,y=3cos t-cos3t ,"find "(dy)/(dx)" at "t=pi/3dot

If x=a (cos t + t sin t) and y=a ( sin t- t cos t), find (d^(2)y)/(dx^(2))

If x=a(cos2t+2tsin2t) and y=a(sin2t-2tcos2t) , then find (dy)/(dx) .

If x=a^(sin^-1 t) ,\ y=a^(cos^-1t) ,\ show that (dy)/(dx)=-y/x