Home
Class 12
MATHS
If x=(3at)/ (1+t^3), y=(3at^2)/(1+t^3), ...

If `x=(3at)/ (1+t^3), y=(3at^2)/(1+t^3), then dy/dx` is

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = \frac{3at}{1+t^3}\) and \(y = \frac{3at^2}{1+t^3}\), we will use the chain rule for differentiation. ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = \frac{3at}{1+t^3} \] Using the quotient rule: \[ \frac{d}{dt}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2} \] where \(u = 3at\) and \(v = 1 + t^3\). First, we find \(u'\) and \(v'\): - \(u' = 3a\) - \(v' = 3t^2\) Now, applying the quotient rule: \[ \frac{dx}{dt} = \frac{(3a)(1+t^3) - (3at)(3t^2)}{(1+t^3)^2} \] Simplifying: \[ \frac{dx}{dt} = \frac{3a(1+t^3) - 9at^3}{(1+t^3)^2} = \frac{3a - 6at^3}{(1+t^3)^2} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = \frac{3at^2}{1+t^3} \] Using the quotient rule again: \[ \frac{dy}{dt} = \frac{(6at)(1+t^3) - (3at^2)(3t^2)}{(1+t^3)^2} \] Simplifying: \[ \frac{dy}{dt} = \frac{6at + 6at^3 - 9at^4}{(1+t^3)^2} = \frac{6at - 3at^4}{(1+t^3)^2} = \frac{3at(2 - t^3)}{(1+t^3)^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{\frac{3at(2 - t^3)}{(1+t^3)^2}}{\frac{3a - 6at^3}{(1+t^3)^2}} \] The \((1+t^3)^2\) cancels out: \[ \frac{dy}{dx} = \frac{3at(2 - t^3)}{3a - 6at^3} \] ### Step 4: Simplify the expression Factoring out \(3a\) from the denominator: \[ \frac{dy}{dx} = \frac{3at(2 - t^3)}{3a(1 - 2t^3)} = \frac{t(2 - t^3)}{1 - 2t^3} \] Thus, the final result is: \[ \frac{dy}{dx} = \frac{t(2 - t^3)}{1 - 2t^3} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

If x=(1+t)/(t^3),y=3/(2t^2)+2/t , then x((dy)/(dx))^3-(dy)/(dx) is equal to (a) 0 (b) -1 (c) 1 (d) 2

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

If x=t^2,\ \ y=t^3 , then (dy)/(dx)

x=a(t-sin t),y=a(1+cos t) then (dy)/(dx) =

If x=(1+logt)/(t^2),\ \ y=(3+2logt)/t ,\ \ find (dy)/(dx) .