Home
Class 12
MATHS
x= 2 cos t -cos 2t ,y=2 sin t-sin 2t ...

`x= 2 cos t -cos 2t ,y=2 sin t-sin 2t ` Find d y / d x

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given parametric equations \(x = 2 \cos t - \cos 2t\) and \(y = 2 \sin t - \sin 2t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = 2 \cos t - \cos 2t \] We differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = \frac{d}{dt}(2 \cos t) - \frac{d}{dt}(\cos 2t) \] Using the derivative of \(\cos x\) which is \(-\sin x\), we have: \[ \frac{dx}{dt} = 2(-\sin t) - (-\sin 2t \cdot 2) = -2 \sin t + 2 \sin 2t \] Thus, \[ \frac{dx}{dt} = -2 \sin t + 2 \sin 2t \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = 2 \sin t - \sin 2t \] We differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = \frac{d}{dt}(2 \sin t) - \frac{d}{dt}(\sin 2t) \] Using the derivative of \(\sin x\) which is \(\cos x\), we have: \[ \frac{dy}{dt} = 2 \cos t - (\cos 2t \cdot 2) = 2 \cos t - 2 \cos 2t \] Thus, \[ \frac{dy}{dt} = 2 \cos t - 2 \cos 2t \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule, we find: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{2 \cos t - 2 \cos 2t}{-2 \sin t + 2 \sin 2t} \] We can simplify this by factoring out the common factor of \(2\): \[ \frac{dy}{dx} = \frac{2(\cos t - \cos 2t)}{2(-\sin t + \sin 2t)} = \frac{\cos t - \cos 2t}{-\sin t + \sin 2t} \] ### Step 4: Simplify using trigonometric identities Using the identities: \[ \cos a - \cos b = -2 \sin\left(\frac{a+b}{2}\right) \sin\left(\frac{a-b}{2}\right) \] and \[ \sin a - \sin b = 2 \sin\left(\frac{a-b}{2}\right) \cos\left(\frac{a+b}{2}\right) \] we can rewrite: \[ \frac{dy}{dx} = \frac{-2 \sin\left(\frac{t + 2t}{2}\right) \sin\left(\frac{t - 2t}{2}\right)}{2 \sin\left(\frac{2t - t}{2}\right) \cos\left(\frac{2t + t}{2}\right)} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-\sin\left(\frac{3t}{2}\right) \sin\left(-\frac{t}{2}\right)}{\sin\left(\frac{t}{2}\right) \cos\left(\frac{3t}{2}\right)} \] Using \(\sin(-x) = -\sin(x)\): \[ \frac{dy}{dx} = \frac{\sin\left(\frac{3t}{2}\right) \sin\left(\frac{t}{2}\right)}{\sin\left(\frac{t}{2}\right) \cos\left(\frac{3t}{2}\right)} \] Cancelling \(\sin\left(\frac{t}{2}\right)\): \[ \frac{dy}{dx} = \frac{\sin\left(\frac{3t}{2}\right)}{\cos\left(\frac{3t}{2}\right)} = \tan\left(\frac{3t}{2}\right) \] ### Final Answer \[ \frac{dy}{dx} = \tan\left(\frac{3t}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

If x=2cost-cos2t ,y=2sint-sin2t ,"f i n d"(d^2y)/(dx^2)"a t"t=pi/2dot

At any two points of the curve represented parametrically by x=a (2 cos t- cos 2t);y = a (2 sin t - sin 2t) the tangents are parallel to the axis of x corresponding to the values of the parameter t differing from each other by :

x=2 cos^2 t, y= 6 sin ^2 t find dy/dx

If x=2cost-cos2t , y=2sint-sin2t ,then at t=(pi)/(4) , (dy)/(dx)=

Show that the equation of normal at any point t on the curve x=3 cos t - cos^(3) t and y=3 sin t - sin^(3) t is 4(y cos^(3) t-x sin^(3) t) = 3 sin 4t .

x=a cos t, y=b sin t find dy/dx

If x=a (cos t + t sin t) and y=a ( sin t- t cos t), find (d^(2)y)/(dx^(2))

If a curve is given by x= a cos t + b/2 cos2t and y= asint + b/2 sin 2t , then the points for which (d^2 y)/dx^2 = 0 , are given by

x=sqrt(sin 2t),y=sqrt(cos 2 t) find dy/dx