Home
Class 12
MATHS
' find dy/dx if x=3sin t-2 sin ^3t, y=3 ...

' find dy/dx if x=3sin t-2 sin ^3t, y=3 cos t -2cos^3t`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = 3\sin t - 2\sin 3t\) and \(y = 3\cos t - 2\cos 3t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) We start with the equation for \(x\): \[ x = 3\sin t - 2\sin 3t \] Now, we differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = 3\cos t - 2\frac{d}{dt}(\sin 3t) \] Using the chain rule, we find: \[ \frac{d}{dt}(\sin 3t) = 3\cos 3t \] Thus, substituting this back, we have: \[ \frac{dx}{dt} = 3\cos t - 2(3\cos 3t) = 3\cos t - 6\cos 3t \] ### Step 2: Differentiate \(y\) with respect to \(t\) Next, we differentiate \(y\): \[ y = 3\cos t - 2\cos 3t \] Differentiating \(y\) with respect to \(t\): \[ \frac{dy}{dt} = -3\sin t + 2\frac{d}{dt}(\cos 3t) \] Using the chain rule again: \[ \frac{d}{dt}(\cos 3t) = -3\sin 3t \] So, substituting this back, we have: \[ \frac{dy}{dt} = -3\sin t + 2(-3\sin 3t) = -3\sin t - 6\sin 3t \] ### Step 3: Find \(\frac{dy}{dx}\) Now, we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the expressions we found: \[ \frac{dy}{dx} = \frac{-3\sin t - 6\sin 3t}{3\cos t - 6\cos 3t} \] ### Step 4: Simplify the expression We can simplify the expression if possible, but in this case, it is already in a simplified form. Thus, we have: \[ \frac{dy}{dx} = \frac{-3\sin t - 6\sin 3t}{3\cos t - 6\cos 3t} \] ### Final Answer So, the final answer for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{-3\sin t - 6\sin 3t}{3\cos t - 6\cos 3t} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

x = "sin" t, y = "cos" 2t

Find dy/dx x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

9.Find: dy/dx if x=t^2 y=t-t^3/3

If x and y are connected parametrically by the equations given, without eliminating the parameter, Find (dy)/(dx) . x=(sin^3t)/(sqrt(cos2t)), y=(cos^3t)/(sqrt(cos2t))

If x=3sint-sin3t ,y=3cos t-cos3t ,"find "(dy)/(dx)" at "t=pi/3dot

If x=3sint-sin3t , y=3cost-cos3t , find (dy)/(dx) at t=pi/3 .

If x=3sint-sin3t ,y=3cos t-cos3t ,"f i n d"(dy)/(dx)"a t"t=pi/3dot

If x=3sint-sin3t ,y=3cos t-cos3t ,"f i n d"(dy)/(dx)"a t"t=pi/3dot

Show that the equation of normal at any point t on the curve x=3 cos t - cos^(3) t and y=3 sin t - sin^(3) t is 4(y cos^(3) t-x sin^(3) t) = 3 sin 4t .

Prove that the segment of the normal to the curve x= 2a sin t + a sin t cos^2 t ; y = - a cos^3 t contained between the co-ordinate axes is equal to 2a.