Home
Class 12
MATHS
Find dy/dx x=e^t (sin t + cos t ),y=e^t(...

Find `dy/dx`
`x=e^t (sin t + cos t ),y=e^t(sin t -cos t)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = e^t (\sin t + \cos t)\) and \(y = e^t (\sin t - \cos t)\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(t\) We start by differentiating \(y\) with respect to \(t\): \[ y = e^t (\sin t - \cos t) \] Using the product rule, we have: \[ \frac{dy}{dt} = \frac{d}{dt}(e^t) \cdot (\sin t - \cos t) + e^t \cdot \frac{d}{dt}(\sin t - \cos t) \] Calculating the derivatives: 1. \(\frac{d}{dt}(e^t) = e^t\) 2. \(\frac{d}{dt}(\sin t - \cos t) = \cos t + \sin t\) Substituting these into our equation gives: \[ \frac{dy}{dt} = e^t (\sin t - \cos t) + e^t (\cos t + \sin t) \] Combining the terms: \[ \frac{dy}{dt} = e^t ((\sin t - \cos t) + (\cos t + \sin t)) = e^t (2\sin t) \] ### Step 2: Differentiate \(x\) with respect to \(t\) Next, we differentiate \(x\) with respect to \(t\): \[ x = e^t (\sin t + \cos t) \] Again using the product rule: \[ \frac{dx}{dt} = \frac{d}{dt}(e^t) \cdot (\sin t + \cos t) + e^t \cdot \frac{d}{dt}(\sin t + \cos t) \] Calculating the derivatives: 1. \(\frac{d}{dt}(e^t) = e^t\) 2. \(\frac{d}{dt}(\sin t + \cos t) = \cos t - \sin t\) Substituting these into our equation gives: \[ \frac{dx}{dt} = e^t (\sin t + \cos t) + e^t (\cos t - \sin t) \] Combining the terms: \[ \frac{dx}{dt} = e^t ((\sin t + \cos t) + (\cos t - \sin t)) = e^t (2\cos t) \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{e^t (2\sin t)}{e^t (2\cos t)} \] The \(e^t\) terms cancel out: \[ \frac{dy}{dx} = \frac{2\sin t}{2\cos t} = \tan t \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \tan t \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

x = "sin" t, y = "cos" 2t

' find dy/dx if x=3sin t-2 sin ^3t, y=3 cos t -2cos^3t

A particle moving on a curve has the position at time t given by x=f'(t) sin t + f''(t) cos t, y= f'(t) cos t - f''(t) sin t where f is a thrice differentiable function. Then prove that the velocity of the particle at time t is f'(t) +f'''(t) .

If x=a e^t(sint+cost) and y=a e^t(sint-cost), prove that (dy)/(dx)=(x+y)/(x-y)dot

x=a(cos t + log tan (t/2)), y =a sin t

If x=a (cos t + t sin t) and y=a ( sin t- t cos t), find (d^(2)y)/(dx^(2))

The tangent to the curve given by x = e^(t) cos t y = e^(t) " sin t at t " = (pi)/(4) makes with x-axis an angle of

Locus of centroid of the triangle whose vertices are (a cos t, a sin t ) , (b sin t - b cos t ) and (1, 0) where t is a parameter, is

x=a cos t, y=b sin t find dy/dx

Find (dy)/(dx) , if x = c t, y= ( c )/( t)