Home
Class 12
MATHS
If x=a(cost+tsint)\ and y=a(sint-tcost)...

If `x=a(cost+tsint)\ ` and `y=a(sint-tcost),\ 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the second derivatives \( \frac{d^2x}{dt^2} \) and \( \frac{d^2y}{dt^2} \), and then find \( \frac{d^2y}{dx^2} \). ### Step 1: Differentiate \( x \) with respect to \( t \) Given: \[ x = a(\cos t + t \sin t) \] Differentiating \( x \) with respect to \( t \): \[ \frac{dx}{dt} = a \left( -\sin t + \left( t \frac{d}{dt}(\sin t) + \sin t \frac{d}{dt}(t) \right) \right) \] Using the product rule for \( t \sin t \): \[ \frac{dx}{dt} = a \left( -\sin t + t \cos t + \sin t \right) \] The \( -\sin t \) and \( +\sin t \) cancel out: \[ \frac{dx}{dt} = a t \cos t \] ### Step 2: Differentiate \( y \) with respect to \( t \) Given: \[ y = a(\sin t - t \cos t) \] Differentiating \( y \) with respect to \( t \): \[ \frac{dy}{dt} = a \left( \cos t - \left( t \frac{d}{dt}(\cos t) + \cos t \frac{d}{dt}(t) \right) \right) \] Using the product rule for \( t \cos t \): \[ \frac{dy}{dt} = a \left( \cos t - \left( -t \sin t + \cos t \right) \right) \] This simplifies to: \[ \frac{dy}{dt} = a \left( \cos t + t \sin t - \cos t \right) = a t \sin t \] ### Step 3: Find the second derivatives \( \frac{d^2x}{dt^2} \) and \( \frac{d^2y}{dt^2} \) Now, we differentiate \( \frac{dx}{dt} \) again to find \( \frac{d^2x}{dt^2} \): \[ \frac{d^2x}{dt^2} = \frac{d}{dt}(a t \cos t) \] Using the product rule: \[ \frac{d^2x}{dt^2} = a \left( \cos t + t \frac{d}{dt}(\cos t) \right) = a \left( \cos t - t \sin t \right) \] Next, we differentiate \( \frac{dy}{dt} \) to find \( \frac{d^2y}{dt^2} \): \[ \frac{d^2y}{dt^2} = \frac{d}{dt}(a t \sin t) \] Using the product rule: \[ \frac{d^2y}{dt^2} = a \left( \sin t + t \cos t \right) \] ### Step 4: Find \( \frac{d^2y}{dx^2} \) Using the chain rule: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dt}\right) \cdot \frac{dt}{dx} \] We already have \( \frac{dy}{dt} = a t \sin t \) and \( \frac{dx}{dt} = a t \cos t \). Thus, \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{a t \sin t}{a t \cos t} = \tan t \] Now, differentiate \( \tan t \) with respect to \( t \): \[ \frac{d}{dt}(\tan t) = \sec^2 t \] Now, we need \( \frac{dt}{dx} \): \[ \frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} = \frac{1}{a t \cos t} \] Finally, we can calculate \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dt}(\tan t) \cdot \frac{dt}{dx} = \sec^2 t \cdot \frac{1}{a t \cos t} = \frac{\sec^2 t}{a t \cos t} \] ### Final Answers: 1. \( \frac{d^2x}{dt^2} = a(\cos t - t \sin t) \) 2. \( \frac{d^2y}{dt^2} = a(\sin t + t \cos t) \) 3. \( \frac{d^2y}{dx^2} = \frac{\sec^2 t}{a t \cos t} \)
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=a(cost+tsint) and y=a(sint-tcost) , then find the value of (dy)/(dx) .

If x=a(cost+tsint) and y=a(sint-tcost) , find (d^2y)/(dx^2)

If x=a(cost+tsint) and y=a(sint-tcost), then find the value of (d^2y)/(dx^2) at t=pi/4

If x=a(cos t+tsint) and y=a(sint-tcost) , then find (d^2y)/(dx^2)

If x=a(cost+tsint) and y=a(sint-tcost) ,find(d^2y)/(dx^2)dot

If x=a e^t(sint+cost) and y=a e^t(sint-cost), prove that (dy)/(dx)=(x+y)/(x-y)dot

Prove that all normals to the curve x=acost+a tsint ,\ \ y=asint-a tcost are at a distance a from the origin.

If x=cost(3-2\ cos^2t) and y=sint(3-2sin^2t) find the value of (dy)/(dx) at t=pi/4

The curve represented by x=2(cost+sint) and y = 5(cos t-sin t ) is

The curve represented by x=2(cost+sint) and y = 5(cos t-sin t ) is