Home
Class 12
MATHS
If x=at^2,y=2 at then find (d^2y)/(dx^2)...

If `x=at^2,y=2` at then find `(d^2y)/(dx^2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) given the equations \(x = at^2\) and \(y = 2at\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(t\) Given: \[ y = 2at \] Differentiating \(y\) with respect to \(t\): \[ \frac{dy}{dt} = 2a \] ### Step 2: Differentiate \(x\) with respect to \(t\) Given: \[ x = at^2 \] Differentiating \(x\) with respect to \(t\): \[ \frac{dx}{dt} = 2at \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values from Steps 1 and 2: \[ \frac{dy}{dx} = \frac{2a}{2at} = \frac{1}{t} \] ### Step 4: Differentiate \(\frac{dy}{dx}\) with respect to \(x\) to find \(\frac{d^2y}{dx^2}\) We need to differentiate \(\frac{dy}{dx} = \frac{1}{t}\) with respect to \(x\). First, we need to express \(\frac{dt}{dx}\): From \(\frac{dx}{dt} = 2at\), we can find \(\frac{dt}{dx}\): \[ \frac{dt}{dx} = \frac{1}{2at} \] Now, using the chain rule: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx} \] Differentiating \(\frac{dy}{dx} = \frac{1}{t}\) with respect to \(t\): \[ \frac{d}{dt}\left(\frac{1}{t}\right) = -\frac{1}{t^2} \] Now substituting this back: \[ \frac{d^2y}{dx^2} = -\frac{1}{t^2} \cdot \frac{1}{2at} = -\frac{1}{2at^3} \] ### Final Result Thus, we have: \[ \frac{d^2y}{dx^2} = -\frac{1}{2at^3} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5m|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5n|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5k|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y=x*cos x then find (d^2y)/(dx^(2)) .

If x=at^2 , y=at ,then (d^2y)/(dx^2)=

If y=(x-x^2) , then find (d^2y)/(dx^2) .

If y=x^x , find (d^2y)/(dx^2) .

y= "tan"^(-1)x then find (d^2y)/(dx^(2)) .

If x=t^2 and y=t^3 , find (d^2y)/(dx^2) .

If y=log x , find (d^2y)/(dx^2) .

If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2) .

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If y=tan^(-1)x^3 then find (d^2y)/(dx^(2)) .

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5l
  1. Find the 2nd derivative if x^3 log x with respect to x.

    Text Solution

    |

  2. If y=tan^(-1)x^3 then find (d^2y)/(dx^(2)).

    Text Solution

    |

  3. Find the 2nd dervative of e^(ax+b) with respect to x.

    Text Solution

    |

  4. If y=x+cotx then prove that sin^2x(d^2y)/(dx^2)-2y+2x=0.

    Text Solution

    |

  5. If y=log(sinx) , prove that (d^3y)/(dx^3)=2cosx cos e c^3x .

    Text Solution

    |

  6. If y=Acosn x+Bsinn x ,s howt h a t (d^2y)/(dx^2)+n^2y=0

    Text Solution

    |

  7. (i) If y=asin(log x) then prove that x^(2)*(d^2y)/(dx^2)+x(dy)/(dx)+y=...

    Text Solution

    |

  8. If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2...

    Text Solution

    |

  9. If y=sin(sinx) , prove that (d^2y)/(dx^2)+tanxdot(dy)/(dx)+y\ cos^2x=0...

    Text Solution

    |

  10. IF y=e^(tan^(-1)x) then prove that : (1+x^(2))(d^2y)/(dx^2)+(2x-1)(d...

    Text Solution

    |

  11. If y^3-3ax^2+x^3=0, then prove that (d^2y)/(dx^2)+(2a^2x^2)/(y^5) = 0

    Text Solution

    |

  12. If y=(t a n^(-1)\ x^2) , show that (x^2+1)^2(d^2\ y)/(dx^2)+2x(x^2+1)(...

    Text Solution

    |

  13. If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

    Text Solution

    |

  14. If y=A e^(-k t)cos(p t+c), then prove that (d^2y)/(dt^2)+2k(dy)/(dx)+n...

    Text Solution

    |

  15. If x=at^2,y=2 at then find (d^2y)/(dx^2).

    Text Solution

    |

  16. If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2).

    Text Solution

    |

  17. If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^...

    Text Solution

    |

  18. If y=(sin^(-1)x)^2+(cos^(-1)x)^2, then prove that (1-x^2)y2-xy(1)-4=0.

    Text Solution

    |