Home
Class 12
MATHS
If x=a(t-sint), y=a(1-cost) then find (...

If `x=a(t-sint), y=a(1-cost)` then find `(d^2y)/(dx^2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) given the parametric equations \(x = a(t - \sin t)\) and \(y = a(1 - \cos t)\), we will follow these steps: ### Step 1: Find \(\frac{dx}{dt}\) and \(\frac{dy}{dt}\) 1. Differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = a\left(1 - \cos t\right) \] Here, the derivative of \(t\) is \(1\) and the derivative of \(-\sin t\) is \(-\cos t\). 2. Differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = a\sin t \] The derivative of \(1\) is \(0\) and the derivative of \(-\cos t\) is \(\sin t\). ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{a\sin t}{a(1 - \cos t)} \] The \(a\) cancels out: \[ \frac{dy}{dx} = \frac{\sin t}{1 - \cos t} \] ### Step 3: Simplify \(\frac{dy}{dx}\) Using the identity \(1 - \cos t = 2\sin^2\left(\frac{t}{2}\right)\) and \(\sin t = 2\sin\left(\frac{t}{2}\right)\cos\left(\frac{t}{2}\right)\): \[ \frac{dy}{dx} = \frac{2\sin\left(\frac{t}{2}\right)\cos\left(\frac{t}{2}\right)}{2\sin^2\left(\frac{t}{2}\right)} = \frac{\cos\left(\frac{t}{2}\right)}{\sin\left(\frac{t}{2}\right)} = \cot\left(\frac{t}{2}\right) \] ### Step 4: Find \(\frac{d^2y}{dx^2}\) Now, we differentiate \(\frac{dy}{dx}\) with respect to \(x\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\cot\left(\frac{t}{2}\right)\right) \] Using the chain rule: \[ \frac{d}{dx}\left(\cot\left(\frac{t}{2}\right)\right) = \frac{d}{dt}\left(\cot\left(\frac{t}{2}\right)\right) \cdot \frac{dt}{dx} \] ### Step 5: Find \(\frac{d}{dt}\left(\cot\left(\frac{t}{2}\right)\right)\) Using the derivative of \(\cot x\): \[ \frac{d}{dt}\left(\cot\left(\frac{t}{2}\right)\right) = -\csc^2\left(\frac{t}{2}\right) \cdot \frac{1}{2} = -\frac{1}{2}\csc^2\left(\frac{t}{2}\right) \] ### Step 6: Find \(\frac{dt}{dx}\) From \(\frac{dx}{dt} = a(1 - \cos t)\): \[ \frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} = \frac{1}{a(1 - \cos t)} \] ### Step 7: Combine the results Now we can substitute back: \[ \frac{d^2y}{dx^2} = -\frac{1}{2}\csc^2\left(\frac{t}{2}\right) \cdot \frac{1}{a(1 - \cos t)} \] ### Final Result Thus, we have: \[ \frac{d^2y}{dx^2} = -\frac{\csc^2\left(\frac{t}{2}\right)}{2a(1 - \cos t)} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5m|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5n|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5k|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y=x*cos x then find (d^2y)/(dx^(2)) .

If x=10(t-sint) , y=12(1-cost) , find (dy)/(dx) .

y= "tan"^(-1)x then find (d^2y)/(dx^(2)) .

If x=a(cos t+tsint) and y=a(sint-tcost) , then find (d^2y)/(dx^2)

If y=(x-x^2) , then find (d^2y)/(dx^2) .

If x=a(cost+tsint) and y=a(sint-tcost) , find (d^2y)/(dx^2)

If x=a(cost+tsint) and y=a(sint-tcost) ,find(d^2y)/(dx^2)dot

If x=at^2,y=2 at then find (d^2y)/(dx^2) .

If x=asint and y=a(cost+logtan(t/2)) , find (d^2y)/(dx^2) .

If x=a(cost+tsint) and y=a(sint-tcost), then find the value of (d^2y)/(dx^2) at t=pi/4

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5l
  1. Find the 2nd derivative if x^3 log x with respect to x.

    Text Solution

    |

  2. If y=tan^(-1)x^3 then find (d^2y)/(dx^(2)).

    Text Solution

    |

  3. Find the 2nd dervative of e^(ax+b) with respect to x.

    Text Solution

    |

  4. If y=x+cotx then prove that sin^2x(d^2y)/(dx^2)-2y+2x=0.

    Text Solution

    |

  5. If y=log(sinx) , prove that (d^3y)/(dx^3)=2cosx cos e c^3x .

    Text Solution

    |

  6. If y=Acosn x+Bsinn x ,s howt h a t (d^2y)/(dx^2)+n^2y=0

    Text Solution

    |

  7. (i) If y=asin(log x) then prove that x^(2)*(d^2y)/(dx^2)+x(dy)/(dx)+y=...

    Text Solution

    |

  8. If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2...

    Text Solution

    |

  9. If y=sin(sinx) , prove that (d^2y)/(dx^2)+tanxdot(dy)/(dx)+y\ cos^2x=0...

    Text Solution

    |

  10. IF y=e^(tan^(-1)x) then prove that : (1+x^(2))(d^2y)/(dx^2)+(2x-1)(d...

    Text Solution

    |

  11. If y^3-3ax^2+x^3=0, then prove that (d^2y)/(dx^2)+(2a^2x^2)/(y^5) = 0

    Text Solution

    |

  12. If y=(t a n^(-1)\ x^2) , show that (x^2+1)^2(d^2\ y)/(dx^2)+2x(x^2+1)(...

    Text Solution

    |

  13. If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

    Text Solution

    |

  14. If y=A e^(-k t)cos(p t+c), then prove that (d^2y)/(dt^2)+2k(dy)/(dx)+n...

    Text Solution

    |

  15. If x=at^2,y=2 at then find (d^2y)/(dx^2).

    Text Solution

    |

  16. If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2).

    Text Solution

    |

  17. If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^...

    Text Solution

    |

  18. If y=(sin^(-1)x)^2+(cos^(-1)x)^2, then prove that (1-x^2)y2-xy(1)-4=0.

    Text Solution

    |