Home
Class 12
MATHS
If f(x)=sin^(-1) ((2x)/(1+x^2)) then f(x...

If `f(x)=sin^(-1) ((2x)/(1+x^2))` then `f(x)` is differentiable on

A

`[-1 , 11]`

B

R - { -1, 1}

C

R - (- 1, 1 )

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine where the function \( f(x) = \sin^{-1} \left( \frac{2x}{1+x^2} \right) \) is differentiable, we will follow these steps: ### Step 1: Identify the function and its domain The function \( f(x) \) is defined as: \[ f(x) = \sin^{-1} \left( \frac{2x}{1+x^2} \right) \] The expression inside the inverse sine function, \( \frac{2x}{1+x^2} \), must lie within the interval \([-1, 1]\) for \( f(x) \) to be defined. ### Step 2: Find the range of \( \frac{2x}{1+x^2} \) To find where \( \frac{2x}{1+x^2} \) lies between -1 and 1, we analyze the expression: 1. Set \( \frac{2x}{1+x^2} = 1 \): \[ 2x = 1 + x^2 \implies x^2 - 2x + 1 = 0 \implies (x-1)^2 = 0 \implies x = 1 \] 2. Set \( \frac{2x}{1+x^2} = -1 \): \[ 2x = -1 - x^2 \implies x^2 + 2x + 1 = 0 \implies (x+1)^2 = 0 \implies x = -1 \] ### Step 3: Determine the intervals The function \( \frac{2x}{1+x^2} \) reaches its maximum at \( x = 1 \) and minimum at \( x = -1 \). We need to check the behavior of \( \frac{2x}{1+x^2} \) in the intervals: - For \( x < -1 \) - For \( -1 < x < 1 \) - For \( x > 1 \) ### Step 4: Analyze the derivative We can differentiate \( f(x) \) using the chain rule: \[ f'(x) = \frac{d}{dx} \left( \sin^{-1} \left( \frac{2x}{1+x^2} \right) \right) = \frac{1}{\sqrt{1 - \left( \frac{2x}{1+x^2} \right)^2}} \cdot \frac{d}{dx} \left( \frac{2x}{1+x^2} \right) \] Calculating \( \frac{d}{dx} \left( \frac{2x}{1+x^2} \right) \): Using the quotient rule: \[ \frac{d}{dx} \left( \frac{2x}{1+x^2} \right) = \frac{(1+x^2)(2) - (2x)(2x)}{(1+x^2)^2} = \frac{2 + 2x^2 - 4x^2}{(1+x^2)^2} = \frac{2 - 2x^2}{(1+x^2)^2} \] ### Step 5: Determine where the derivative is defined The derivative \( f'(x) \) is defined as long as: 1. \( 1 - \left( \frac{2x}{1+x^2} \right)^2 > 0 \) 2. \( 1+x^2 \neq 0 \) (which is always true for real \( x \)) ### Step 6: Analyze the critical points The critical points are \( x = -1 \) and \( x = 1 \). We check the left-hand and right-hand derivatives at these points: - \( f'(-1) \) and \( f'(1) \) must be checked for continuity. ### Conclusion From the analysis, we find that \( f(x) \) is differentiable everywhere except at the points \( x = -1 \) and \( x = 1 \). Thus, the function \( f(x) \) is differentiable on: \[ \mathbb{R} \setminus (-1, 1) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.1|34 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.2|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5o|20 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1)((2x)/(1+x^(2))), then Statement I The value of f(2)=sin^(-1)((4)/(5)) . Statement II f(x)=sin^(-1)((2x)/(1+x^(2)))=-2, for xlt1

Let f(x)= sin^(-1)((2x)/(1+x^2))AAx in R . The function f(x) is continuous everywhere but not differentiable at x is/ are

If f(x)={x^2 sin((pi x)/2), |x| =1 then f(x) is

If f(x)={'x^2(sgn[x])+{x},0 Option 1. f(x) is differentiable at x = 1 Option 2. f(x) is continuous but non-differentiable at x = 1 Option 3. f(x) is non-differentiable at x = 2 Option 4. f(x) is discontinuous at x = 2

If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable function, then the value of f'(8) is

If f(x)=sin^(-1)""(2*(3)^(x))/(1+9^(x)) , then f'(-(1)/(2)) is equal to

If f(x)={:{(x^2", "x le 1),( x^2-x+1"," x gt1):} then show that f(x) is not differentiable at x=1 .

Given f^(prime)(1)=1"and"d/(dx)(f(2x))=f^(prime)(x)AAx > 0 .If f^(prime)(x) is differentiable then there exies a number c in (2,4) such that f''(c) equals

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5p
  1. f (x) = {{:((|x^(2)- x|)/(x^(2) - x),xne 0"," 1),(1",", x = 0),(-1","...

    Text Solution

    |

  2. Let f(x) ={{:((x-4)/(|x-4|)+a,xlt4),(a+b,x=4),( (x-4)/(|x-4|)+b, x gt4...

    Text Solution

    |

  3. The points of discontinuity of the function f (x) = {{:(3x + 1"," ,...

    Text Solution

    |

  4. If f (x) = sin (x)/(x), x ne 0 then the value of the function at x = ...

    Text Solution

    |

  5. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  6. If (x) = |x| + |x - 1|, than :

    Text Solution

    |

  7. Given that f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),(...

    Text Solution

    |

  8. If f (x) {{:((1 - cos 8 x )/(x^(2)) "," x ge 0 ),(lambda ", ...

    Text Solution

    |

  9. The function f(x)={x} , where [x] denotes the greatest integer functio...

    Text Solution

    |

  10. If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is continuous at x=0 , then find ...

    Text Solution

    |

  11. If f(x)=sin^(-1) ((2x)/(1+x^2)) then f(x) is differentiable on

    Text Solution

    |

  12. If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha...

    Text Solution

    |

  13. d/(dx)[log{e^x((x-2)/(x+2))^(3//4)}] equals (a) (x^2-1)/(x^2-4) (b...

    Text Solution

    |

  14. If x=acos^(3) theta, y=a sin^(3) theta, then ([1+((dy)/(dx))^(2)]^(3//...

    Text Solution

    |

  15. If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2)...

    Text Solution

    |

  16. The derivative of the function cot^(-1){(cos2x)^(1//2)} at x=pi//6 ...

    Text Solution

    |

  17. If y^(2) = ax^(2) + bx + c where a, b c are contants then y^(3)(d^(2...

    Text Solution

    |

  18. If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1...

    Text Solution

    |

  19. "If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y(2)+xy(1) is (where ...

    Text Solution

    |

  20. If y = sin ^(2) alpha + cos ^(2) (alpha + beta) + 2 sin alpha sin beta...

    Text Solution

    |