Home
Class 12
MATHS
If y^(2) = ax^(2) + bx + c where a, b c ...

If `y^(2) = ax^(2) + bx + c` where a, b c are contants then
`y^(3)(d^(2)y)/(dx^(2))=`?

A

A constant

B

A function of x

C

A function of y

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( y^3 \frac{d^2y}{dx^2} \) given the equation \( y^2 = ax^2 + bx + c \), where \( a, b, c \) are constants. ### Step-by-Step Solution: 1. **Differentiate the given equation:** \[ y^2 = ax^2 + bx + c \] Differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(y^2) = \frac{d}{dx}(ax^2 + bx + c) \] Using the chain rule on the left side: \[ 2y \frac{dy}{dx} = 2ax + b \] 2. **Rearranging for \( \frac{dy}{dx} \):** \[ \frac{dy}{dx} = \frac{2ax + b}{2y} \] 3. **Differentiate again to find \( \frac{d^2y}{dx^2} \):** We will apply the quotient rule to differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{2ax + b}{2y}\right) \] Let \( u = 2ax + b \) and \( v = 2y \). Then: \[ \frac{d^2y}{dx^2} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where: \[ \frac{du}{dx} = 2a \] and: \[ \frac{dv}{dx} = 2 \frac{dy}{dx} = 2 \cdot \frac{2ax + b}{2y} = \frac{2ax + b}{y} \] Substituting these into the formula gives: \[ \frac{d^2y}{dx^2} = \frac{(2y)(2a) - (2ax + b)\left(\frac{2ax + b}{y}\right)}{(2y)^2} \] 4. **Simplifying \( \frac{d^2y}{dx^2} \):** \[ \frac{d^2y}{dx^2} = \frac{4ay - \frac{(2ax + b)^2}{y}}{4y^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{4ay^2 - (2ax + b)^2}{4y^3} \] 5. **Finding \( y^3 \frac{d^2y}{dx^2} \):** Multiply \( y^3 \) by \( \frac{d^2y}{dx^2} \): \[ y^3 \frac{d^2y}{dx^2} = y^3 \cdot \frac{4ay^2 - (2ax + b)^2}{4y^3} \] This simplifies to: \[ y^3 \frac{d^2y}{dx^2} = \frac{4ay^2 - (2ax + b)^2}{4} \] 6. **Substituting \( y^2 \):** Since \( y^2 = ax^2 + bx + c \): \[ y^3 \frac{d^2y}{dx^2} = \frac{4a(ax^2 + bx + c) - (2ax + b)^2}{4} \] 7. **Final simplification:** After simplifying the expression, we find that: \[ y^3 \frac{d^2y}{dx^2} = ac - b^2 \] This is a constant since \( a, b, c \) are constants. ### Conclusion: Thus, the final answer is that \( y^3 \frac{d^2y}{dx^2} \) is a constant.
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.1|34 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.2|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5o|20 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))

"If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

If y^2=P(x) , then 2d/dx(y^3(d^2y/dx^2))

If int_0^3 (3ax^2+2bx+c)dx=int_1^3 (3ax^2+2bx+c)dx where a,b,c are constants then a+b+c=

The value of int_(-2)^(2)(ax^(2011)+bx^(2001)+c)dx , where a , b , c are constants depends on the value of

The differential equation of the family of curves whose equation is (x-h)^2+(y-k)^2=a^2 , where a is a constant, is (A) [1+(dy/dx)^2]^3=a^2 (d^2y)/dx^2 (B) [1+(dy/dx)^2]^3=a^2 ((d^2y)/dx^2)^2 (C) [1+(dy/dx)]^3=a^2 ((d^2y)/dx^2)^2 (D) none of these

STATEMENT-1 : y = e^(x) is a particular solution of (dy)/(dx) = y . STATEMENT-2 : The differential equation representing family of curve y = a cos omega t + b sin omega t , where a and b are parameters, is (d^(2)y)/(dt^(2)) - omega^(2) y = 0 . STATEMENT-3 : y = (1)/(2)x^(3)+c_(1)x+c_(2) is a general solution of (d^(2)y)/(dx^(2)) = 3x .

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

if y=ae^(x)+be^(-3x)+c , then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx)) is

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5p
  1. f (x) = {{:((|x^(2)- x|)/(x^(2) - x),xne 0"," 1),(1",", x = 0),(-1","...

    Text Solution

    |

  2. Let f(x) ={{:((x-4)/(|x-4|)+a,xlt4),(a+b,x=4),( (x-4)/(|x-4|)+b, x gt4...

    Text Solution

    |

  3. The points of discontinuity of the function f (x) = {{:(3x + 1"," ,...

    Text Solution

    |

  4. If f (x) = sin (x)/(x), x ne 0 then the value of the function at x = ...

    Text Solution

    |

  5. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  6. If (x) = |x| + |x - 1|, than :

    Text Solution

    |

  7. Given that f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),(...

    Text Solution

    |

  8. If f (x) {{:((1 - cos 8 x )/(x^(2)) "," x ge 0 ),(lambda ", ...

    Text Solution

    |

  9. The function f(x)={x} , where [x] denotes the greatest integer functio...

    Text Solution

    |

  10. If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is continuous at x=0 , then find ...

    Text Solution

    |

  11. If f(x)=sin^(-1) ((2x)/(1+x^2)) then f(x) is differentiable on

    Text Solution

    |

  12. If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha...

    Text Solution

    |

  13. d/(dx)[log{e^x((x-2)/(x+2))^(3//4)}] equals (a) (x^2-1)/(x^2-4) (b...

    Text Solution

    |

  14. If x=acos^(3) theta, y=a sin^(3) theta, then ([1+((dy)/(dx))^(2)]^(3//...

    Text Solution

    |

  15. If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2)...

    Text Solution

    |

  16. The derivative of the function cot^(-1){(cos2x)^(1//2)} at x=pi//6 ...

    Text Solution

    |

  17. If y^(2) = ax^(2) + bx + c where a, b c are contants then y^(3)(d^(2...

    Text Solution

    |

  18. If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1...

    Text Solution

    |

  19. "If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y(2)+xy(1) is (where ...

    Text Solution

    |

  20. If y = sin ^(2) alpha + cos ^(2) (alpha + beta) + 2 sin alpha sin beta...

    Text Solution

    |