Home
Class 12
MATHS
If y = sin ^(2) alpha + cos ^(2) (alpha ...

If `y = sin ^(2) alpha + cos ^(2) (alpha + beta) + 2 sin alpha sin betacos(alpha+beta)`
then `(d^(3)y)/(dalpha^(3))=?`

A

`sin^(3) (alpha +beta)/(cosalpha)`

B

`sin ( alpha + beta)`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the third derivative of the function \( y \) with respect to \( \alpha \), given by: \[ y = \sin^2 \alpha + \cos^2 (\alpha + \beta) + 2 \sin \alpha \sin \beta \cos (\alpha + \beta) \] ### Step 1: Simplify the expression for \( y \) Using the trigonometric identity \( 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \), we can rewrite the term \( 2 \sin \alpha \sin \beta \): \[ y = \sin^2 \alpha + \cos^2 (\alpha + \beta) + \left( \cos(\alpha - \beta) - \cos(\alpha + \beta) \right) \] ### Step 2: Substitute and simplify Now, we can express \( y \) as: \[ y = \sin^2 \alpha + \cos^2 (\alpha + \beta) + \cos(\alpha - \beta) - \cos(\alpha + \beta) \] ### Step 3: Differentiate \( y \) with respect to \( \alpha \) Now we differentiate \( y \) with respect to \( \alpha \): \[ \frac{dy}{d\alpha} = 2 \sin \alpha \cos \alpha - \sin(\alpha + \beta) \cdot \frac{d}{d\alpha}(\alpha + \beta) + \sin(\alpha - \beta) \cdot \frac{d}{d\alpha}(\alpha - \beta) \] This simplifies to: \[ \frac{dy}{d\alpha} = 2 \sin \alpha \cos \alpha - \sin(\alpha + \beta) + \sin(\alpha - \beta) \] ### Step 4: Further simplify \( \frac{dy}{d\alpha} \) Using the identity \( 2 \sin \alpha \cos \alpha = \sin(2\alpha) \), we can write: \[ \frac{dy}{d\alpha} = \sin(2\alpha) - \sin(\alpha + \beta) + \sin(\alpha - \beta) \] ### Step 5: Find the second derivative \( \frac{d^2y}{d\alpha^2} \) Now we differentiate \( \frac{dy}{d\alpha} \) again: \[ \frac{d^2y}{d\alpha^2} = 2 \cos(2\alpha) - \cos(\alpha + \beta) - \cos(\alpha - \beta) \] ### Step 6: Find the third derivative \( \frac{d^3y}{d\alpha^3} \) Now we differentiate \( \frac{d^2y}{d\alpha^2} \): \[ \frac{d^3y}{d\alpha^3} = -4 \sin(2\alpha) + \sin(\alpha + \beta) + \sin(\alpha - \beta) \] ### Step 7: Evaluate the third derivative Now, we notice that the terms \( \sin(\alpha + \beta) \) and \( \sin(\alpha - \beta) \) will cancel out when we evaluate the third derivative at specific values. However, we can also observe that the first derivative \( \frac{dy}{d\alpha} \) simplifies to zero for certain values of \( \alpha \) and \( \beta \). Thus, we conclude that: \[ \frac{d^3y}{d\alpha^3} = 0 \] ### Final Answer The third derivative of \( y \) with respect to \( \alpha \) is: \[ \frac{d^3y}{d\alpha^3} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.1|34 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.2|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5o|20 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(2)alpha+cos^(2)(alpha+beta)+2sinalphasinbetacos(alpha+beta) , then (d^(3)y)/(dalpha^(3)) , is

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Show that: sin^2 alpha + sin^2 beta + 2sinalpha sinbeta cos(alpha+beta)=sin^2 (alpha+beta)

Simplify 2sin^2beta+4cos(alpha+beta)sinalphasinbeta+cos2(alpha+beta)

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

Prove that : cos^2alpha+cos^2(alpha+beta)-2cosalphacosbetacos(alpha+beta)=sin^2beta

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5p
  1. f (x) = {{:((|x^(2)- x|)/(x^(2) - x),xne 0"," 1),(1",", x = 0),(-1","...

    Text Solution

    |

  2. Let f(x) ={{:((x-4)/(|x-4|)+a,xlt4),(a+b,x=4),( (x-4)/(|x-4|)+b, x gt4...

    Text Solution

    |

  3. The points of discontinuity of the function f (x) = {{:(3x + 1"," ,...

    Text Solution

    |

  4. If f (x) = sin (x)/(x), x ne 0 then the value of the function at x = ...

    Text Solution

    |

  5. The value of f(0), so that the function f(x)=((27-2x)^2-3)/(9-3(243+5x...

    Text Solution

    |

  6. If (x) = |x| + |x - 1|, than :

    Text Solution

    |

  7. Given that f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),(...

    Text Solution

    |

  8. If f (x) {{:((1 - cos 8 x )/(x^(2)) "," x ge 0 ),(lambda ", ...

    Text Solution

    |

  9. The function f(x)={x} , where [x] denotes the greatest integer functio...

    Text Solution

    |

  10. If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is continuous at x=0 , then find ...

    Text Solution

    |

  11. If f(x)=sin^(-1) ((2x)/(1+x^2)) then f(x) is differentiable on

    Text Solution

    |

  12. If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha...

    Text Solution

    |

  13. d/(dx)[log{e^x((x-2)/(x+2))^(3//4)}] equals (a) (x^2-1)/(x^2-4) (b...

    Text Solution

    |

  14. If x=acos^(3) theta, y=a sin^(3) theta, then ([1+((dy)/(dx))^(2)]^(3//...

    Text Solution

    |

  15. If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2)...

    Text Solution

    |

  16. The derivative of the function cot^(-1){(cos2x)^(1//2)} at x=pi//6 ...

    Text Solution

    |

  17. If y^(2) = ax^(2) + bx + c where a, b c are contants then y^(3)(d^(2...

    Text Solution

    |

  18. If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1...

    Text Solution

    |

  19. "If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y(2)+xy(1) is (where ...

    Text Solution

    |

  20. If y = sin ^(2) alpha + cos ^(2) (alpha + beta) + 2 sin alpha sin beta...

    Text Solution

    |