Home
Class 12
MATHS
y= "tan"^(-1)x then find (d^2y)/(dx^(2))...

`y= "tan"^(-1)x` then find `(d^2y)/(dx^(2))`.

Text Solution

AI Generated Solution

To find the second derivative of the function \( y = \tan^{-1}(x) \), we will follow these steps: ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Using the known derivative of the inverse tangent function, we have: \[ \frac{dy}{dx} = \frac{1}{1 + x^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.8|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.6|11 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)x^3 then find (d^2y)/(dx^(2)) .

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

y=x*cos x then find (d^2y)/(dx^(2)) .

If y =log (1+ 2t^(2)+t^(4)), x= tan^(-1) t find (d^(2)y)/(dx^(2))

If y=cos^(-1)x ,find (d^2y)/(dx^2) .

If y=x^x , find (d^2y)/(dx^2) .

If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2) .

If y=(x-x^2) , then find (d^2y)/(dx^2) .

If y=tan^(-1)x , find (d^2y)/(dx^2) in terms of y alone.

If y=tan^(-1)x , find (d^2y)/(dx^2) in terms of y alone.