Home
Class 12
MATHS
If y=(tan^(-1)x)^2, show that (x^2+1)^2y...

If `y=(tan^(-1)x)^2`, show that `(x^2+1)^2y_2+2x(x^2+1)y_1=2`

Text Solution

Verified by Experts

`y= (tan^(-1)x)^(2)`
`=(dy)/(dx)=2tan^(-1)x*(1)/(1+x^(2))`
`implies (1+x^(2))(dy)/(dx)=2tan^(-1)x`
Again, differentiate both sides w.r.t. x
`(1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=(2)/(1+x^(2))`
`implies(1+x^(2))^(2)(d^(2)y)/(dx^(2))+2x(1+x^(2))(dy)/(dx)=2`
`implies(1+x^(2))^(2)(d^(2)y)/(dx^(2))+2x(1+x^(2))(dy)/(dx)-2=0 " "`Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.8|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.6|11 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=(cot^(-1)x)^2 , prove that y_2(x^2+1)^2+2x(x^2+1)y_1=2 .

If logy=tan^(-1)x , show that (1+x^2)y_2+(2x-1)y_1=0 .

If y=(tan^(-1)x)^2 , then prove that (1+x^2)^2\ y_2+2x\ (1+x^2)y_1=2 .

If y=e^(tan^(-1)x) , prove that (1+x^2)y_2+(2x-1)y_1=0 .

If y=e^"tan"^((-1)"x")), prove that (1+x^2)y_2+(2x-1)y_1=0.

If y=tan^(-1)x , show that (1+x^2)(d^2y)/(dx^2)+2x(dy)/(dx)=0 .

If y=(sin^(-1)x)^2 , prove that (1-x^2)y_2-x y_1-2=0 .

If e^y(x+1)=1, show that (d^(2y))/(dx^2)=((dy)/(dx))^2 If y=sin(2sin^(-1)x), show that ((1-x^2)d^(2y))/(dx^2)=x(dy)/(dx)-4y

If y=e^(tan^-1x), prove that (1+x^2)y_2+(2x-1)y_1=0

If y=(sin^(-1)x)^2 ,prove that (1-x^2)y_2-x y_1-2=0.