Home
Class 12
MATHS
Find the approximate value of f(5. 001),...

Find the approximate value of `f(5. 001),` where `f(x)=x^3-7x^2+15.`

Text Solution

Verified by Experts

`f(x) = x^(3) - 7x^(2) + 15`
` rArr f'(x) = 3x^(2) = 14 x`
Let `x = 5 and h= 0.001`
Now ` f(x+h) = f(x) + hf'(x)`
` rArr f(5.001) = f(x) + hf'(x)`
` = [5^(3) - 7 xx 5^(2) + 15]+0.001`
`xx[3 xx 5^(2) - 14 xx 5]`
` = - 35 + 0.001 xx 5`
` = - 35 + 0.005 =- 34.995`
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6.5|29 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|24 Videos
  • APPLICATIONS OF DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 6.3|27 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the approximate value of f(3. 02), where f(x)=3x^2+5x+3.

Find the approximate value of f(2. 01) , where f(x)=4x^2+5x+2 .

Find the approximate value of f(2. 01) , where f(x)=4x^2+5x+2 .

Using differentials, find the approximate value of f(2. 01), where f(x)=4x^3+5x^2+2.

Find the approximate value of f(3. 02) , where f(x)=3x^2+5x+3 .

Find the approximate value of f(3. 02) , where f(x)=3x^2+5x+3 .

Find the approximate value of f(3.01) when y = f(x) = x^(2)+3x+1 .

If f(x) = 2x^(2)+5x+2 , then find the approximate value of f(2.01) .

Find the approximate value of f(3. 02), upto 2 places of decimal, where f(x)=3x^2+5x+3.

If f(x)=3x^2+15 x+5, then the approximate value of f (3. 02) is(A) 47.66 (B) 57.66 (C) 67.66 (D) 77.66