Home
Class 12
MATHS
Evaluate : int (1)/(" sin"^(2) x " cos"^...

Evaluate : `int (1)/(" sin"^(2) x " cos"^(2) x ") ") " dx "`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \frac{1}{\sin^2 x \cos^2 x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{\sin^2 x \cos^2 x} \, dx \] Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can express \( 1 \) in a different form: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(1)/(4sin^(2) x + 9 cos^(2) x) dx

Evaluate : int ( " 4+3 sin x ")/(" cos"^(2) x) " dx "

Evaluate : int 1/x^2 sin^2 (1/x)dx

Evaluate: int1/(sin^2x+sin2x)\ dx

int(1)/(sin^(2)x-4 cos^(2)x)dx

int(1)/((2 sin x + cos x)^(2))dx

Evaluate: int1/(sin^2x cos^2x)\ dx

Evaluate: int1/(sin^2x+sin2x)dx

Evaluate int(1)/(sin x- sin 2x)dx .

Evaluate : int(1)/(x^(2)"cos"^(2)((1)/(x)))dx