Home
Class 12
MATHS
int (x^(6) -(1)/(x) +e^(x) +3)dx...

`int (x^(6) -(1)/(x) +e^(x) +3)dx`

Text Solution

Verified by Experts

The correct Answer is:
`(x^(7))/(7)-log x+e^(x) +3x +c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (4e^(3x) +1)dx

int(x^(e-1)-e^(x-1))/(x^e-e^x)dx

int_(0)^(1) (dx)/(e^(x)+e^(-x))

Evaluate: int(x^(e-1)-e^(x-1))/(x^e-e^x)dx

int_(0)^(1)(dx)/(e^(x)+e^(-x))

Evaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx

(i) int (e^(x) .(1-x))/(x^(2))dx (ii) int ((1+sin x)/(1+cos x))e^(x) dx

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

(iii) int(e^(x)-1)/(1-e^(-x))dx