Home
Class 12
MATHS
Evaluate : int (e^("log x "))/(x) " dx ...

Evaluate : ` int (e^("log x "))/(x) " dx "`

Text Solution

AI Generated Solution

To evaluate the integral \(\int \frac{e^{\log x}}{x} \, dx\), we can follow these steps: ### Step 1: Simplify the expression \(e^{\log x}\) Using the property of exponents and logarithms, we know that: \[ e^{\log x} = x \] This means we can substitute \(e^{\log x}\) with \(x\) in our integral. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int ("cos (log x)")/(x) " dx "

Evaluate : int ((1+"log"x)^(2))/(x)-" dx "

Evaluate : int x^n log x dx.

Evaluate : int(x^(2) +1)"log x dx"

Evaluate : int_(1)^(2) (cos (log x))/(x) dx

Evaluate int 5^(log _(e)x)dx

Evaluate int (sin(log x))/(x)dx

Evaluate int 2^(log_(4)x)dx

Evaluate : int(1)/(x^(2)). " log x dx "

Evaluate: int(log)_(10)x\ dx