Home
Class 12
MATHS
Evaluate : int (" sec x + tan x")/(" sec...

Evaluate : `int (" sec x + tan x")/(" sec x- tan x") " dx "`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \frac{\sec x + \tan x}{\sec x - \tan x} \, dx \), we can follow these steps: ### Step 1: Rationalize the Expression We start by multiplying and dividing the integrand by \( \sec x + \tan x \): \[ \int \frac{(\sec x + \tan x)(\sec x + \tan x)}{(\sec x - \tan x)(\sec x + \tan x)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(secx- tan x)/(sec x+ tan x) dx

Evaluate : int sec x tan x sqrt(4 sec^(2) x- 1) dx

int x sec x*tan xdx

Evaluate int sec^(3)x dx .

Evaluate : int " sec"^(2) " 3x dx "

Evaluate : int "("3e^(x) -(1)/(5x)+ " sec x tan x ) dx "

Evaluate: int(sec^2x)/(1-tan^2x)dx

Evaluate : int tan x tan 2 x tan 3x dx

Evaluate : int_0^pi(xtan\ x)/(sec\ x+tan\ x)\ dx

Evaluate ∫ sec x ⋅ tan x ⋅ d x