Home
Class 12
MATHS
Evaluate: int(log x)/xdx...

Evaluate: `int(log x)/xdx`

Text Solution

AI Generated Solution

To evaluate the integral \(\int \frac{\log x}{x} \, dx\), we can follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, the differential \( dt \) can be found as follows: \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt = e^t \, dt \] since \( x = e^t \) when \( t = \log x \). ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(logx^2)/xdx

Evaluate: int(logx)/xdx

Evaluate: int(sin(logx)/xdx)

Evaluate: int(log(logx)/x)\ dx

Evaluate: (i) int(logx)/x\ dx (ii) int(log(1+1/x))/(x(1+x))\ dx

Evaluate : int_1^e(logx)/xdx

Evaluate int (sin(log x))/(x)dx

Evaluate: int(log(1+1/x))/(x(1+x))dx

Evaluate: int(log(1+1/x))/(x(1+x))dx

Evaluate: int(log(x+2))/((x+2)^2)\ dx