Home
Class 12
MATHS
Evaluate : int(1)/(x^(2)). " log x dx "...

Evaluate : `int(1)/(x^(2)). " log x dx "`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \frac{\log x}{x^2} \, dx \), we can use integration by parts. Let's go through the steps in detail. ### Step 1: Identify \( u \) and \( dv \) We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int(x^(2) +1)"log x dx"

Evaluate : int_(1)^(2) (cos (log x))/(x) dx

Evaluate : int (e^("log x "))/(x) " dx "

Evaluate : int (sqrt(x^(2) + 1) ( log (x^(2) + 1) - 2 log x))/( x^(4)) dx

Evaluate : int_(0)^((pi)/(2)) log (cot x)dx .

Evaluate: int_(0)^((pi)/(2)) log (sin x) dx

Evaluate int(log_(e)x)^(2)dx

Evaluate int(log_(e)x)^(2)dx

Evaluate : int ((1+"log"x)^(2))/(x)-" dx "

Evaluate: int e^(x) (tan x + log sec x) dx .