Home
Class 12
MATHS
int sec^(3) x dx...

`int sec^(3) x dx`

Text Solution

Verified by Experts

`"Let I "= int sec^(3) d dx`
`= int sec^(2) x.sec x dx`
` =sec ^(2) x dx - int {(d)/(dx) sec. x int sec^(2) x dx } dx`
`"(Tanking sec x as 1st function)"`
`= "sec x . tan x "- int " sec x tan x . tan x dx "`
`= " sec x tan x . -" int " sec x . "(sec^(2) x - 1) dx`
`=" sec x tan x - " int sec^(3) " x dx + " int "sec + dx "`
` rArr " " I = sec x tan x - I + log | sec x + tan x | " C_(1)`
` rarr " "2I =sec x tan x + log | sec x + tan x| +"c_(1)`
` rArr I =(1)/(2) "[sec x tan x + log | sec x + tan x |]"+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int sec^(-1)x dx

int x sinx sec^(3)x dx is equal to

inte^(x+3) dx

Evaluate the following integrals. int tanx sec^(6) x dx

The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here C is a constant of integration)

(i) int(sec x* cosec x)/(log cot x) dx (ii) int tan^(4) x\ dx

Evaluate int tan ^(2) x sec^(4) x dx

Evaluate : int sec x tan x sqrt(4 sec^(2) x- 1) dx

int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx

Evaluate : int " sec"^(2) " 3x dx "