Home
Class 12
MATHS
Evaluate : int sec x tan x sqrt(4 sec^(2...

Evaluate : `int sec x tan x sqrt(4 sec^(2) x- 1) dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \sec x \tan x \sqrt{4 \sec^2 x - 1} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the integral: \[ I = \int \sec x \tan x \sqrt{4 \sec^2 x - 1} \, dx \] Notice that we can rewrite the square root: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int sec x tan x sqrt(sec^(2) x+1)dx

int sec x tan x sqrt(tan^(2) x-4) dx

int x sec x*tan xdx

Evaluate int sec^(3)x dx .

Evaluate : int (" sec x + tan x")/(" sec x- tan x") " dx "

Evaluate: int tan ^(-1) sqrt x dx

int sec^(-1)x dx

Evaluate: int e^(x) (tan x + log sec x) dx .

Evaluate: int (sec ^(2) x)/(cosec ^(2) x) dx

Evaluate : int " sec"^(2) " 3x dx "