Home
Class 12
MATHS
Evaluate: intsqrt(tanx)dx...

Evaluate: `intsqrt(tanx)`dx

Text Solution

Verified by Experts

`=int sqrt(t^(2)) .(2t dt )/(1+t^(4)) " ""Let tan x = "t^(2)`
`rArr sec^(2) x dx =dt .2t`
` =int ((t^(2) +1)+(t^(2)-1))/(t^(4)+1) dt rArr dx = (2t dt)/(1+ tan^(2) x)`
`=int(t^(2) +1)/(t^(4)+1) dt + int(t^(2) -1)/(t^(4)+_1) dt " " =(2t dt)/(1+t^(4))`
` =int (1+(1)/(t^(2)))/(t^(2) +(1)/(t^(2)))dt +int(1-(1)/(t^(2)))/(t^(2)-(1)/(t^(2))) dt`
`=int (1+(1)/(t^(2)))/((t-(1)/(t))^(2) +(sqrt(2))^(2)) dt + int(1-(1)/(t^(2)))/((t+(1)/(t))^(2)-(sqrt(2))^(2)) dt`
Let for 1st intergral `t-(1)/(t)=u rArr (1+(1)/(t^(2))) dt =du`
for 2nd intergal `t+(1)/(t)=u rArr (1-(1)/(t^(2))) dt =du`
`:. I = int (1)/(u^(2) +(sqrt(2))^(2) )du +int(1)/(u^(2) -(sqrt(2))^(2)) du`
` =(1)/(sqrt(2)) tan^(-1) ((u)/(sqrt(2))) +(1)/(2sqrt(2)) log |(u-sqrt(2))/(u+sqrt(2))| +c.`
` =(1)/(sqrt(2)) tan^(-1) ((t-(1)/(t))/(sqrt(2)))+(1)/(2sqrt(2))log |(t+(1)/(t)-sqrt2)/(t+(1)/(t) +sqrt(2))| +c.`
`=(1)/(sqrt(2))tan^(-1) ((t^(2)-1)/(sqrt(2)t))+(1)/(2sqrt(2))log |(t^(2)-tsqrt2+1)/(t^(2) +tsqrt(2) +1)| +c.`
`=(1)/(sqrt(2)) tan^(-1)((tan x-1)/(sqrt(2) tan x+1))+(1)/(2sqrt(2)) log`
` |(tan x-sqrt(2 tan x+1))/(tan x+ sqrt(2tan x +1))| +c.`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sqrt(tanx))dx

Evaluate: (i) intsqrt(tanx)(1+tan^2x)\ dx (ii) int{f\ (a x+b)}^nf^(prime)(a x+b)dx ,\ \ n!=-1

Evaluate: intsqrt((a+x)/x)\ dx

Evaluate: intsqrt(secx-1)dx

Evaluate intsqrt((a-x)/x)dx

Evaluate: intsqrt(e^x-1)dx

Evaluate: intsqrt(9-x^2)dx

Evaluate: intsqrt (1-x^2)dx

Evaluate: intsqrt (1+x^2)dx

Evaluate introot(3)(tanx)dx