Home
Class 12
MATHS
Evaluate : int(0)^(pi//4) tan ^(2) x dx...

Evaluate : `int_(0)^(pi//4) tan ^(2) x dx `

Text Solution

AI Generated Solution

To evaluate the integral \( \int_{0}^{\frac{\pi}{4}} \tan^2 x \, dx \), we can follow these steps: ### Step 1: Use the Identity for \(\tan^2 x\) We know the identity: \[ \tan^2 x = \sec^2 x - 1 \] Using this identity, we can rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) sin ^(2) x dx

int_(0)^(pi//4) cos^(2) x dx

int_(0)^(pi//2) sin ^(4) x dx

Evaluate: int_0^(pi//4)tan^2x dx

Evaluate : int_(0)^(pi//4) tan x . sec x dx

int_(0)^( pi/4)tan^(3)dx

Evaluate: int_0^(pi//4)tan^2x\ dx

Evaluate : int_(0)^(pi//2) sin x dx

int_(0)^(pi//8) tan^(2) 2x dx is equal to

int_(0)^(pi//4) e^(x) (tan x+ sec^(2)x) dx