Home
Class 12
MATHS
Evaluate : int (0)^(pi//4) sin 2x sin 3 ...

Evaluate : `int _(0)^(pi//4) sin 2x sin 3 x dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{\frac{\pi}{4}} \sin 2x \sin 3x \, dx \), we can follow these steps: ### Step 1: Use the product-to-sum identities We can use the identity: \[ 2 \sin a \sin b = \cos(a - b) - \cos(a + b) \] In our case, let \( a = 2x \) and \( b = 3x \). Thus, we have: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/4) sin 2x dx

Evaluate : int_(0)^(pi//2) sin x dx

Evaluate : int_(0)^(pi//2) sin^(3) x cos x dx

int_(0)^(pi//4) sin ^(2) x dx

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

Evaluate: int_0^(pi//4)sin3xsin2x\ dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi) sin 3x dx

Evaluate : int_(-pi//4)^(pi//4) |sin x|dx

Evaluate: int_(0)^(pi) xlog (sin x) dx