Home
Class 12
MATHS
Evaluate : int(1)^(2) (cos (log x))/(x) ...

Evaluate : `int_(1)^(2) (cos (log x))/(x) dx `

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{1}^{2} \frac{\cos(\log x)}{x} \, dx \), we will use substitution. ### Step-by-Step Solution: 1. **Substitution**: Let \( t = \log x \). Then, we differentiate both sides: \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt = e^t \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int ("cos (log x)")/(x) " dx "

Evaluate: int(1+x^2)cos2x\ dx

Evaluate int_(-1)^(1) log ((2-x)/( 2+x)) dx

Evaluate : int_(0)^(1)(log(1+x))/(1+x^2)dx

solve int_(1)^(2)(log x)/(x^(2))dx

Evaluate : int(1)/(x^(2)"cos"^(2)((1)/(x)))dx

Evaluate : int(1)/(x^(2)). " log x dx "

Evaluate : int(x^(2) +1)"log x dx"

Evaluate: int_(0)^(1) log (1/x-1)dx

Evaluate : int_(0)^(1)log ((1)/(x) -1) dx