Home
Class 12
MATHS
Evaluate : int(0)^(pi//6) (cosx)/(3+4 si...

Evaluate : `int_(0)^(pi//6) (cosx)/(3+4 sin x)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{\frac{\pi}{6}} \frac{\cos x}{3 + 4 \sin x} \, dx \), we will use the substitution method. ### Step-by-step Solution: 1. **Set up the integral**: \[ I = \int_{0}^{\frac{\pi}{6}} \frac{\cos x}{3 + 4 \sin x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(pi//2) (cosx)/((1+sin x)(2+sinx)) dx

Evaluate : int_(0)^(pi//2) sin x dx

Evaluate : int_(0)^(pi) (dx)/(5+4cosx)

Evaluate: int_0^(pi//2)1/(3+2cosx)dx

Evaluate : int_(0)^(pi)(|cos x| + |sin x|)dx .

Evaluate : int_(0)^(pi//2) (3^("cos x"))/(3^("sin x") + 3^("cos x")) dx

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

Evaluate: int_0^(pi//2)cosx\ dx

Evaluate : int _(0)^(pi//4) sin 2x sin 3 x dx

Evaluate: int_0^(pi//2)(cosx)/(1+cosx+sinx)dx