Home
Class 12
MATHS
Evaluate : int(0)^(1) cos^(-1) dx...

Evaluate : `int_(0)^(1) cos^(-1) dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{1} \cos^{-1}(x) \, dx \), we will use a substitution method and integration by parts. Here’s the step-by-step solution: ### Step 1: Substitution Let \( x = \cos(\theta) \). Then, we differentiate both sides: \[ dx = -\sin(\theta) \, d\theta \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(1) log (1/x-1)dx

Evaluate : int_(0)^(pi) |cos x| dx

Evaluate : int_(0)^(1) (1-x)^(3//2) dx

Evaluate : int_(0)^(oo)(cot^(-1)x)^(2)dx

Evaluate: int_0^1logx dx

Evaluate : int_(0)^(1)log ((1)/(x) -1) dx

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Evaluate: int_(0)^(pi//2) cos2x dx

(1) Evaluate int_(0)^(1)x^(7)*dx

Evaluate: int1/(x^2)cos^2(1/x)dx