Home
Class 12
MATHS
Prove that: int(0)^(oo) (x)/((1+x)(1+x^(...

Prove that: `int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx =(pi)/(4)`

Text Solution

Verified by Experts

Let x=tan 0
`rArr " " dx =sec^(2) 0 d0`
`At x=0 , " "tan 0=0 " " rArr " "0=0`
`At x=oo , " "tan 0 =oo " "rArr " "0=(pi)/(2)`
`"Let I "=int_(0)^(oo) (x) /((1+x)(1+x^(2)))dx`
`=int_(0)^(pi//2) (tan0)/((1+tan 0)(1+tan^(2)0)) .sec^(2) 0 d0`
`rArr I= int_(0)^(pi//2) (tan0)/(1+tan 0) d0`
`rArr I=int_(0)^(pi//2) (tan.((pi)/2-0))/(1+tan .((pi)/(2)-0))do`
[From Property (4)]
`=int_(0)^(pi//2) (cot0)/(1+cot 0) d0`
` =int_(0)^(pi//2) (1//tan0)/(1+(1)/(tan0))d0`
`rArr " "I= int_(0)^(pi//2) (1)/(tan0+1)d0......(2)`
Adding eqs. (1) and(2)
`2I=int_(0)^(pi//2) (tan0+1)/(tan0+1)d0`
`=int_(0)^(pi//2) 1d0`
` =[0]_(0)^(pi//2)`
`=pi//2`
`rArr " "i=(pi)/(4)`Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

Prove that : int_(0)^(a) (dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)

Prove that :int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

Prove that : int_(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log_(e) 2

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)x dx

Prove that : int_(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

int_(0)^(oo)(x)/((1+x)(1+x^(2))) dx equals to :

Prove that : int_(0)^(pi//2)(x)/(sin x +cos x)dx= (pi)/(4sqrt(2)) log |(sqrt(2)+1)/(sqrt(2)-1)|