Home
Class 12
MATHS
Evaluate : int(0)^(pi) |cos x| dx...

Evaluate : `int_(0)^(pi) |cos x| dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_{0}^{\pi} |\cos x| \, dx \), we will break it down into two parts based on the behavior of the cosine function. ### Step 1: Identify the intervals The function \( |\cos x| \) behaves differently in the intervals \( [0, \frac{\pi}{2}] \) and \( [\frac{\pi}{2}, \pi] \): - In the interval \( [0, \frac{\pi}{2}] \), \( \cos x \) is non-negative, so \( |\cos x| = \cos x \). - In the interval \( [\frac{\pi}{2}, \pi] \), \( \cos x \) is non-positive, so \( |\cos x| = -\cos x \). ### Step 2: Break the integral into parts ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(4pi)|cos x| dx .

int_(0)^(pi/2) cos 2x dx

Evaluate : int_(0)^(pi)(|cos x| + |sin x|)dx .

int_(0)^(50pi)| cos x|dx=

int_(0)^(pi//2) cos 3x dx

Evaluate : int_(0)^(pi//2) sin x dx

Evaluate int _(0)^(pi/4) cos x dx

Evaluate: int_(0)^(pi//2) cos2x dx

Evaluate int _(0)^(pi//2)cos x dx

int_(0)^(pi/2) cos^(2) x dx