Home
Class 12
MATHS
int x^(-6) " dx "...

`int x^(-6) " dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^{-6} \, dx \), we will follow the steps outlined below: ### Step-by-Step Solution: 1. **Identify the integral**: We start with the integral we need to solve: \[ I = \int x^{-6} \, dx \] 2. **Use the power rule for integration**: The power rule states that: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] where \( n \neq -1 \). Here, \( n = -6 \). 3. **Apply the power rule**: We substitute \( n = -6 \) into the formula: \[ I = \frac{x^{-6 + 1}}{-6 + 1} + C \] 4. **Simplify the exponent and denominator**: Calculate \( -6 + 1 = -5 \): \[ I = \frac{x^{-5}}{-5} + C \] 5. **Rewrite the expression**: This can be simplified further: \[ I = -\frac{1}{5} x^{-5} + C \] 6. **Final answer**: Thus, the integral is: \[ \int x^{-6} \, dx = -\frac{1}{5} x^{-5} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int3x^(6)dx

Evaluate : int " (6 sin x) " " dx "

int cot^6 x dx

evaluate int (x^2+6x+12) dx

Evaluate the following integrals. int tanx sec^(6) x dx

Evaluate : int (x^(4)+1)/(x^(6)+1)" dx "

Evaluate: int(x^6)/(x-1)\ dx

Evaluate int _(-6) ^(3) |x+3| dx

solve int(x^(2)+6x+9)dx =

Integrate the following functions with respect to x (a) int (5x^2 + 3x -2) dx (b) int (4sin x-(2)/(x)) dx (c) int (dx)/(4x+5) (d) int (6x +2)^(3) dx