Home
Class 12
MATHS
intz^(-1//3) " dz "...

`intz^(-1//3) " dz "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int z^{-\frac{1}{3}} \, dz \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the integral**: We need to evaluate the integral: \[ \int z^{-\frac{1}{3}} \, dz \] 2. **Use the power rule for integration**: The power rule states that: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] where \( C \) is the constant of integration, and \( n \neq -1 \). 3. **Determine \( n \)**: In our case, \( n = -\frac{1}{3} \). 4. **Apply the power rule**: We can now apply the power rule: \[ \int z^{-\frac{1}{3}} \, dz = \frac{z^{-\frac{1}{3} + 1}}{-\frac{1}{3} + 1} + C \] 5. **Simplify the exponent**: Calculate \( -\frac{1}{3} + 1 \): \[ -\frac{1}{3} + 1 = -\frac{1}{3} + \frac{3}{3} = \frac{2}{3} \] Thus, we have: \[ \int z^{-\frac{1}{3}} \, dz = \frac{z^{\frac{2}{3}}}{\frac{2}{3}} + C \] 6. **Simplify the fraction**: Dividing by \( \frac{2}{3} \) is the same as multiplying by its reciprocal: \[ \frac{z^{\frac{2}{3}}}{\frac{2}{3}} = z^{\frac{2}{3}} \cdot \frac{3}{2} = \frac{3}{2} z^{\frac{2}{3}} \] 7. **Final result**: Therefore, the integral evaluates to: \[ \int z^{-\frac{1}{3}} \, dz = \frac{3}{2} z^{\frac{2}{3}} + C \] ### Final Answer: \[ \int z^{-\frac{1}{3}} \, dz = \frac{3}{2} z^{\frac{2}{3}} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int sec^(2) " z dz "

If I_(n)=int z^(n)e^(1//z)dz , then show that (n+1)! I_(n)=I_(0)+e^(1//z)(1!z^(2)+2!z^(3)+...+n!z^(n+1)) .

If I_(1)=int_(0)^(x) e^("zx ")e^(-z^(2))dz and I_(2)=int_(0)^(x) e^(-z^(2)//4)dz , them

Ifx=int_c^(sint)sin^(-1)z dz ,y=int_k^(sqrt(t))(sinz^2)/zdz ,t h e n(dy)/(dx) is \ equals

If x=int_c^(sint)sin^(-1)z dz ,y =int_k^(sqrt(t))(sinz^2)/zdz, then (dy)/(dx) is equal to (a) (tant)/(2t) (b) (tant)/(t^2) (c) t/(2t^2) (d) (tan t)/(2t^2)

If y=e^("sin"^(-1)x)andz=e^(-"cos"^(-1)x) , prove that dy/(dz)=e^(pi//2) .

Prove that int_0^x e^(zx)e^(-z^2)dz=e^(x^2/4)int_0^xe^(-z^2/4)dz

If x=int_(c^(2))^(tan t)tan^(-1)z dz, y= int_(n)^(sqrt(t))(cos(z^(2)))/(z)dx then (dy)/(dx) is equal to : (where c and n are constants) :

Let y=f(x) and x=(1)/(z)." If "(d^(2)y)/(dx^(2))=lamda_(z^(3))(dy)/(dz)+z^(4)(d^(2)y)/(dz^(2)) , then the value of lamda is

Let int_x^(x+p)f(t)dt be independent of x and I_1=int_0^p f(t) dt , I_2 = int_(10)^(p^n+10) f(z) dz for some p , where n in N . Then evaluate (I_2)/(I_1) .