Home
Class 12
MATHS
int b^(x+a) " dx "...

`int b^(x+a) " dx "`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int b^{(x+a)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int b^{(x+a)} \, dx \] We can rewrite \( b^{(x+a)} \) as: \[ b^{(x+a)} = b^x \cdot b^a \] Thus, we have: \[ I = \int b^x \cdot b^a \, dx \] ### Step 2: Factor Out the Constant Since \( b^a \) is a constant with respect to \( x \), we can factor it out of the integral: \[ I = b^a \int b^x \, dx \] ### Step 3: Use the Integration Formula We know the formula for the integral of \( b^x \): \[ \int b^x \, dx = \frac{b^x}{\log b} + C \] Using this formula, we can substitute back into our integral: \[ I = b^a \left( \frac{b^x}{\log b} + C \right) \] ### Step 4: Distribute the Constant Now, we distribute \( b^a \): \[ I = \frac{b^a b^x}{\log b} + b^a C \] We can combine the constants: \[ I = \frac{b^{(x+a)}}{\log b} + C_1 \] where \( C_1 = b^a C \). ### Final Result Thus, the final result for the integral is: \[ \int b^{(x+a)} \, dx = \frac{b^{(x+a)}}{\log b} + C_1 \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(a)^(b) x dx

If | int_a ^b f(x) dx| = int_a ^b |f(x)| dx, a lt b , then f(x) = 0 has

If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and positive constant a such that int_b^(c+b)f(x)dx is independent of b , then find the least positive value of c

If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and positive constant a such that int_b^(c+b)f(x)dx is independent of b , then find the least positive value of cdot

int_(a)^(b)cos x dx

Evaluate: int1/(a^x\ b^x)\ dx

If f(x)=f(a+b-x) for all x in[a,b] and int_(a)^(b) xf(x) dx=k int_(a)^(b) f(x) dx , then the value of k, is

If int_(a)^(b)f(dx)dx=l_(1), int_(a)^(b)g(x)dx = l_(2) then :

If f(a+b-x)=f(x),\ t h e n\ int_a^b xf(x)dx is equal to a. (a+b)/2int_a^bf(b-x)dx b. (a+b)/2int_a^bf(b+x)dx c. (b-1)/2int_a^bf(x)dx d. (a+b)/2int_a^bf(x)dx

STATEMENT-1 : int_(-2pi)^(5pi)cot^(-1)(tanx)dx=7(pi^(2))/(2) and STATEMENT-2 : int_(a)^(b)f(x)dx=int_(a)^(c )f(x)dx+int_(c )^(b)f(x)dx , a lt c lt b