Home
Class 12
MATHS
int(1)/(cos x . cot x ) dx...

`int(1)/(cos x . cot x ) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\cos x \cdot \cot x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the integral: \[ \int \frac{1}{\cos x \cdot \cot x} \, dx \] We know that \( \cot x = \frac{\cos x}{\sin x} \). Therefore, we can rewrite the integrand: \[ \cot x = \frac{\cos x}{\sin x} \implies \frac{1}{\cot x} = \frac{\sin x}{\cos x} \] Substituting this into the integral gives: \[ \int \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} \, dx = \int \frac{\sin x}{\cos^2 x} \, dx \] ### Step 2: Use a trigonometric identity Now, we can express \( \frac{\sin x}{\cos^2 x} \) in terms of \( \sec x \) and \( \tan x \): \[ \frac{\sin x}{\cos^2 x} = \sin x \cdot \sec^2 x \] Thus, we can rewrite the integral as: \[ \int \sin x \cdot \sec^2 x \, dx \] ### Step 3: Use substitution Let \( u = \cos x \). Then, the derivative \( du = -\sin x \, dx \) or \( -du = \sin x \, dx \). This transforms our integral: \[ \int \sin x \cdot \sec^2 x \, dx = -\int \sec^2 x \, du \] Since \( \sec^2 x = \frac{1}{\cos^2 x} = \frac{1}{u^2} \), we have: \[ -\int \frac{1}{u^2} \, du \] ### Step 4: Integrate The integral \( -\int \frac{1}{u^2} \, du \) can be computed as follows: \[ -\int u^{-2} \, du = -\left(-\frac{1}{u}\right) = \frac{1}{u} + C \] Substituting back \( u = \cos x \): \[ \frac{1}{\cos x} + C = \sec x + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{\cos x \cdot \cot x} \, dx = \sec x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7b|26 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/( 1+cos 2x ) dx

int (1)/(1-cot x)

int(1)/(1-cos 2x) dx

int(1)/(7+5 cos x)dx=

int ( x + cotx ) cot^2x dx

int(1+cos 2x)/(1-cos 2x)dx

int(1)/(5+4 cos x)dx

int 1/(2+cos x)dx

int(1)/(5+2 cos x)dx

(i) int sqrt(1+ sin .(x)/(2)dx) (ii) int (1+cos 4x)/(cot x- tan x)dx