Home
Class 12
MATHS
int(3x-2)^(3) dx...

`int(3x-2)^(3) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (3x - 2)^3 \, dx \), we will follow these steps: ### Step 1: Expand the integrand using the binomial theorem We start by expanding \( (3x - 2)^3 \) using the binomial expansion formula: \[ (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \] Here, \( a = 3x \) and \( b = 2 \). Thus, we have: \[ (3x - 2)^3 = (3x)^3 - 3(3x)^2(2) + 3(3x)(2^2) - (2)^3 \] Calculating each term: - \( (3x)^3 = 27x^3 \) - \( 3(3x)^2(2) = 3 \cdot 9x^2 \cdot 2 = 54x^2 \) - \( 3(3x)(2^2) = 3 \cdot 3x \cdot 4 = 36x \) - \( (2)^3 = 8 \) Putting it all together: \[ (3x - 2)^3 = 27x^3 - 54x^2 + 36x - 8 \] ### Step 2: Write the integral Now we can write the integral as: \[ \int (3x - 2)^3 \, dx = \int (27x^3 - 54x^2 + 36x - 8) \, dx \] ### Step 3: Integrate term by term Now we will integrate each term separately: 1. \( \int 27x^3 \, dx = 27 \cdot \frac{x^{4}}{4} = \frac{27}{4}x^4 \) 2. \( \int -54x^2 \, dx = -54 \cdot \frac{x^{3}}{3} = -18x^3 \) 3. \( \int 36x \, dx = 36 \cdot \frac{x^{2}}{2} = 18x^2 \) 4. \( \int -8 \, dx = -8x \) ### Step 4: Combine the results Now we combine all the results of the integrals: \[ \int (3x - 2)^3 \, dx = \frac{27}{4}x^4 - 18x^3 + 18x^2 - 8x + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int (3x - 2)^3 \, dx = \frac{27}{4}x^4 - 18x^3 + 18x^2 - 8x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (3x-2)^(1/2) dx , x>2/3

Integrate the following functions with respect to x (a) int (5x^2 + 3x -2) dx (b) int (4sin x-(2)/(x)) dx (c) int (dx)/(4x+5) (d) int (6x +2)^(3) dx

int((x-2)^3)/x^2dx =?

Evaluate: inte^x+(x-2)^3\ dx

int (3x^2+e^x) dx

int 3/(2x-3) dx

int 3x^2 e^(x^3) dx

\int (3x^(2)+4x^(3)) dx

int (2x)/(3x+2) dx

Find the following integrals. 1. int 3x^(7)dx 2. int 4 sqrt(x)dx 3. int(dx)/(sqrt(x)) 4. int(x^(3)-5x^(2)+7x-11)dx 5. int 3 xdx 6. int 5x^(2)dx 7. int(1)/(2)x^(3)dx