Home
Class 12
MATHS
int x^2/(1+x^2) dx...

`int x^2/(1+x^2) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x^2}{1+x^2} \, dx\), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand \(\frac{x^2}{1+x^2}\) by adding and subtracting 1 in the numerator: \[ \frac{x^2}{1+x^2} = \frac{x^2 + 1 - 1}{1+x^2} = \frac{x^2 + 1}{1+x^2} - \frac{1}{1+x^2} \] This gives us: \[ \int \frac{x^2}{1+x^2} \, dx = \int \left( \frac{x^2 + 1}{1+x^2} - \frac{1}{1+x^2} \right) \, dx \] ### Step 2: Separate the integrals Now we can separate the integral into two parts: \[ \int \frac{x^2 + 1}{1+x^2} \, dx - \int \frac{1}{1+x^2} \, dx \] ### Step 3: Simplify the first integral The first integral simplifies as follows: \[ \frac{x^2 + 1}{1+x^2} = 1 \] Thus, we have: \[ \int \frac{x^2 + 1}{1+x^2} \, dx = \int 1 \, dx = x \] ### Step 4: Evaluate the second integral The second integral is a standard integral: \[ \int \frac{1}{1+x^2} \, dx = \tan^{-1}(x) \] ### Step 5: Combine the results Putting it all together, we have: \[ \int \frac{x^2}{1+x^2} \, dx = x - \tan^{-1}(x) + C \] where \(C\) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int \frac{x^2}{1+x^2} \, dx = x - \tan^{-1}(x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int x^2(1-1/x^2) dx =

int (x^2+1/x^2)^2 dx

Evaluate: int(2x)/(1+x^2)\ dx

solve int(3x^2)/(x^2+1)dx

Evaluate int(x^2-1)/(x^2+1)dx

Evaluate: int(1-x^2)/(1+x^2).dx/sqrt(1+x^4)

Evaluate: int(x^2-1)/(x^2+4)dx

int(x^2)/(x^(2)+1)dx

int( x^2+4)/(x^2+1)dx

Evaluate: int(tan^-1x)^2/(1+x^2)dx