Home
Class 12
MATHS
intsqrt(1+sin 2x) dx...

`intsqrt(1+sin 2x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 + \sin 2x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start by letting: \[ I = \int \sqrt{1 + \sin 2x} \, dx \] Using the identity for \( \sin 2x \): \[ \sin 2x = 2 \sin x \cos x \] we can rewrite the integral as: \[ I = \int \sqrt{1 + 2 \sin x \cos x} \, dx \] ### Step 2: Use the Pythagorean identity We know that: \[ 1 = \sin^2 x + \cos^2 x \] Thus, we can express \( 1 + \sin 2x \) as: \[ 1 + \sin 2x = \sin^2 x + \cos^2 x + 2 \sin x \cos x = (\sin x + \cos x)^2 \] So, we rewrite the integral: \[ I = \int \sqrt{(\sin x + \cos x)^2} \, dx \] ### Step 3: Simplify the square root Since \( \sqrt{(\sin x + \cos x)^2} = |\sin x + \cos x| \), we can assume \( \sin x + \cos x \) is non-negative in the interval we are considering. Thus: \[ I = \int (\sin x + \cos x) \, dx \] ### Step 4: Split the integral Now we can split the integral: \[ I = \int \sin x \, dx + \int \cos x \, dx \] ### Step 5: Integrate each term We know: \[ \int \sin x \, dx = -\cos x + C_1 \] \[ \int \cos x \, dx = \sin x + C_2 \] Combining these results, we have: \[ I = -\cos x + \sin x + C \] ### Final Result Thus, the final result for the integral is: \[ I = \sin x - \cos x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

intsqrt(1+cos 2x) dx

intsqrt(1-cos 2x) dx

Evaluate: intsqrt(1-sin2x)\ dx

Evaluate: (i) sqrt(1-cos2x)\ dx (ii) intsqrt(1+sin2x)\ dx

intsqrt(1+sinx)dx

intsqrt(1+sinx)dx

If intsqrt (1+sin2x)dx=sqrt (2)sin(x+a)+b , then find values of a and b .

Evaluate: intsqrt(1+sin(x/2)dx)

Evaluate: intsqrt(1+x-2x^2)\ dx

Evaluate: intsqrt((1-sin2x)/(1+sin2x))dx