Home
Class 12
MATHS
int(x^(2) +3)/(x^(2)+1)dx...

`int(x^(2) +3)/(x^(2)+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x^2 + 3}{x^2 + 1} \, dx\), we can break it down into simpler parts. Here’s a step-by-step solution: ### Step 1: Rewrite the integrand We start with the integral: \[ \int \frac{x^2 + 3}{x^2 + 1} \, dx \] We can separate the numerator: \[ \frac{x^2 + 3}{x^2 + 1} = \frac{x^2 + 1 + 2}{x^2 + 1} = \frac{x^2 + 1}{x^2 + 1} + \frac{2}{x^2 + 1} \] This simplifies to: \[ 1 + \frac{2}{x^2 + 1} \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ \int \left(1 + \frac{2}{x^2 + 1}\right) \, dx = \int 1 \, dx + \int \frac{2}{x^2 + 1} \, dx \] ### Step 3: Integrate each part 1. The integral of 1: \[ \int 1 \, dx = x \] 2. The integral of \(\frac{2}{x^2 + 1}\): \[ \int \frac{2}{x^2 + 1} \, dx = 2 \int \frac{1}{x^2 + 1} \, dx \] We know that: \[ \int \frac{1}{x^2 + 1} \, dx = \tan^{-1}(x) \] Therefore: \[ 2 \int \frac{1}{x^2 + 1} \, dx = 2 \tan^{-1}(x) \] ### Step 4: Combine the results Now we combine the results from both integrals: \[ \int \frac{x^2 + 3}{x^2 + 1} \, dx = x + 2 \tan^{-1}(x) + C \] where \(C\) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int \frac{x^2 + 3}{x^2 + 1} \, dx = x + 2 \tan^{-1}(x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7c|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7a|14 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int (4x^(2) +x+1)/(x^(3) -1) dx=?

solve int(3x^2)/(x^2+1)dx

Integrate the following (1) intx^(-3/2)dx (2) intsin60^(@)dx (3) int(1)/(10x)dx (4) int(2x^(3)-x^(2)+1)dx

Evaluate: int(x^2-3x)/((x-1)(x-2))dx

Evaluate: int_(1)^(2)(3x^(2)+2x+1)dx

int ((1+x)^3)/(x^2) dx

int(x^2+x+3)/((x-2)(x+1))dx

int(2x^(3))/((x^(2)+1)^(2))dx

Evaluate: int (x^(2) +x+3)/((x-2)(x+1)) dx

int(2x^2+3)sqrt(x+2)\ dx (ii) int(x^2+3x+1)/((x+1)^2)\ dx